Skip to main content
Log in

Light dark matter and dark radiation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Light (M ≤ 20 MeV) dark-matter particles freeze out after neutrino decoupling. If the dark-matter particle couples to a neutrino or an electromagnetic plasma, the late time entropy production from dark-matter annihilation can change the neutrino-to-photon temperature ratio, and equally the effective number of neutrinos N eff. We study the non-equilibrium effects of dark-matter annihilation on the N eff and the effects by using a thermal equilibrium approximation. Both results are constrained with Planck observations. We demonstrate that the lower bounds of the dark-matter mass and the possibilities of the existence of additional radiation particles are more strongly constrained for dark-matter annihilation process in non-equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Dicus, E. W. Kolb, A. M. Gleeson, E. C. G. Sudarshan, V. L. Teplitz and M. S. Turner, Phys. Rev. D 26, 2694 (1982).

    Article  ADS  Google Scholar 

  2. G. Mangano, G. Miele, S. Pastor and M. Peloso, Phys. Lett. B 534, 8 (2002), astro-ph/0111408.

    Article  ADS  Google Scholar 

  3. K. N. Abazajian, M. A. Acero and S. K. Agarwalla, et al., arXiv:1204.5379.

  4. S. Weinberg, Phys. Rev. Lett. 110, 241301 (2013), arXiv:1305.1971.

    Article  ADS  Google Scholar 

  5. P. A. R. Ade et al. [Planck Collaboration], arXiv: 1502.01589.

  6. C. M. Ho and R. J. Scherrer, Phys. Rev. D 87, 023505 (2013), arXiv:1208.4347; Phys. Rev. D 87, 065016 (2013), arXiv:1212.1689.

    Article  ADS  Google Scholar 

  7. G. Steigman, Phys. Rev. D 87, 103517 (2013), arXiv:1303.0049.

    Article  ADS  Google Scholar 

  8. C. Boehm, M. J. Dolan and C. McCabe, J. Cosmol. Astropart. Phys. 08, 041 (2013), arXiv:1303.6270.

  9. K. M. Nollett and G. Steigman, Phys. Rev. D 89, 083508 (2014), arXiv:1312.5725; Phys. Rev. D 91, 083505 (2015), arXiv:1411.6005.

    Article  ADS  Google Scholar 

  10. A. G. Riess et al., Astrophys. J. 730, 119 (2011) [Erratum-ibid. 732, 129 (2011)], arXiv:1103.2976.

    Article  ADS  Google Scholar 

  11. J. Yang, D. Schramm, G. Steigman and R. T. Rood, Astrophys. J. 227, 697 (1979).

    Article  ADS  Google Scholar 

  12. R. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy and C. C. Steidel, Astrophys. J. 781, 31 (2014), arXiv:1308.3240.

    Article  ADS  Google Scholar 

  13. M. Pettini and R. Cooke, Mon. Not. R. Astron. Soc. 425, 2477 (2012), arXiv:1205.3785.

    Article  ADS  Google Scholar 

  14. E. Aver, K. A. Porter, R. L. Porter and E. D. Skillman, J. Cosmol. Astropart. Phys. 11, 017 (2013), arXiv:1309.0047.

    Article  ADS  Google Scholar 

  15. Y. I. Izotov, T. X. Thuan, and N. G. Guseva, Mon. Not. Roy. Astron. Soc. 445, 778 (2014), arXiv:1408.6953.

    Article  ADS  Google Scholar 

  16. E. W. Kolb, M. S. Turner and T. P. Walker, Phys. Rev. D 34, 2197 (1986).

    Article  ADS  Google Scholar 

  17. P. D. Serpico and G. G. Raffelt, Phys. Rev. D 70, 043526 (2004), astro-ph/0403417.

    Article  ADS  Google Scholar 

  18. C. Boehm and P. Fayet, Nucl. Phys. B 683, 219 (2004), hep-ph/0305261.

    Article  ADS  Google Scholar 

  19. C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, Phys. Rev. Lett.} 92, 101301 (2004), astro-ph/0309686.

    Article  ADS  Google Scholar 

  20. D. Hooper, F. Ferrer, C. Boehm, J. Silk, J. Paul, N. W. Evans and M. Casse, Phys. Rev. Lett. 93, 161302 (2004), astro-ph/0311150.

    Article  ADS  Google Scholar 

  21. K. Ahn and E. Komatsu, Phys. Rev. D 72, 061301 (2005), astro-ph/0506520.

    Article  ADS  Google Scholar 

  22. C. Boehm, M. J. Dolan and C. McCabe, J. Cosmol. Astropart. Phys. 12, 027 (2012), arXiv:1207.0497.

    Google Scholar 

  23. We distinguish terminology, “decoupling” and “freezeout”, in this paper. “Decoupling” will be used in the case that (DM) particles are completely non-interacting at some point, and “freeze-out” is for chemical decoupling. Notice this does not mean that DM dumps energy in the neutrino or the electromagnetic plasma instantaneously. The evolving comoving number density of DM particles has a sizable deviation from its equilibrium prediction around freeze-out (see Fig. 1).

  24. D. P. Finkbeiner, S. Galli, T. Lin and T. R. Slatyer, Phys. Rev. D 85, 043522 (2012), arXiv:1109.6322.

    Article  ADS  Google Scholar 

  25. L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A. C. Vincent, J. Cosmol. Astropart. Phys. 07, 046 (2013), arXiv:1303.5094.

    Article  ADS  Google Scholar 

  26. The mark “ ~ ” is placed on top of the symbol of the number of the effective relativistic degrees of freedom to indicate DM inclusion. If there is no “ ~ ” mark, DM is excluded.

  27. Notice that one of the DM decoupling temperatures is determined when the equilibrium DM number is the same as the present-day DM relic density, Yeq(TbD) = Y0.

  28. K. Enqvist, K. Kainulainen and V. Semikoz, Nucl. Phys. B 374, 392 (1992).

    Article  ADS  Google Scholar 

  29. A. D. Dolgov, Phys. Rept. 370, 333 (2002), hepph/ 0202122.

    Article  ADS  Google Scholar 

  30. S. Hannestad, Phys. Rev. D 65, 083006 (2002), astroph/0111423.

    Article  ADS  Google Scholar 

  31. The plasma in the thermal bath b is always in thermal equilibrium because it is not relevant to the DM interaction, so the entropy Sb is constant.

  32. A certain number of neutrinos can remain in nonequilibrium if their scattering strength is not enough large. We need to consider the detailed Boltzmann equation with the scattering cross section for this process. Because our work is not concerned with any specific model, we assume that the produced neutrinos are in the equilibrium at recombination. The details with scattering are left for a future study.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Ho Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J.H., Kim, C.S. Light dark matter and dark radiation. Journal of the Korean Physical Society 68, 715–721 (2016). https://doi.org/10.3938/jkps.68.715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.715

Keywords

Navigation