Skip to main content
Log in

Aspects of superfluid cold atomic gases in optical lattices

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We review our studies on Bose and Fermi superfluids of cold atomic gases in optical lattices at zero temperature. Especially, we focus on superfluid Fermi gases along the crossover between the Bardeen-Cooper-Schrieffer (BCS) and the Bose-Einstein condensate (BEC) states, which enable us to study the Bose and the Fermi superfluids in a unified point of view. We discuss basic static and long-wavelength properties (such as the equation of state, incompressibility, and effective mass), energetic stability, and energy band structures of the superfluid Fermi gases in an optical lattice periodic along one spatial direction. The periodic potential causes pairs of atoms to be strongly bound, and this can affect the static and long-wavelength properties and the stability of the superflow. Regarding the band structure, a peculiar loop structure called “swallowtail” can appear in superfluid Fermi gases and in the Bose case, but the mechanism of emergence in the Fermi case is very different from that in bosonic case. Other quantum phases that the cold atomic gases in optical lattices can show are also briefly discussed based on their roles as quantum simulators of Hubbard models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); K. B. Davis, M-O. Mewes, M. R. Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  2. M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck and W. Ketterle, Nature 435, 1047 (2005).

    Article  ADS  Google Scholar 

  3. A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

    Article  ADS  Google Scholar 

  4. F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  5. I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  6. S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).

    Article  ADS  Google Scholar 

  7. I. Bloch, J. Dalibard and S. Nascimbène, Nature Phys. 8, 267 (2012).

    Article  ADS  Google Scholar 

  8. U. Fano, Phys. Rev. 124, 1866 (1961); H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).

    Article  ADS  MATH  Google Scholar 

  9. D. M. Eagles, Phys. Rev. 186, 456 (1969); A. J. Leggett, in Modern Trends in the Theory of Condensed Matter (Springer-Verlag, Berlin, 1980), p. 13; P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985); C. A. R. Sá de Melo, M. Randeria and J. R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993).

    Article  ADS  Google Scholar 

  10. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).

    Article  ADS  Google Scholar 

  11. G. B. Partridge, W. Li, R. I. Kamar, Y. A. Liao and R. G. Hulet, Science 311, 503 (2006); M. W. Zwierlein, C. H. Schunck, A. Schirotzek and W. Ketterle, Nature 442, 54 (2006); Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature 451, 689 (2008).

    Article  ADS  Google Scholar 

  12. C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schafer and J. E. Thomas, Science 331, 58 (2011); B. V. Jacak and B. Muller, Science 337, 310 (2012).

    Article  ADS  Google Scholar 

  13. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

    Article  ADS  Google Scholar 

  14. V. I. Yukalov, Laser Phys. 19, 1 (2009).

    Article  ADS  Google Scholar 

  15. W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet and M. Greiner, Science 329, 547 (2010); C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schau Nature 471, 319 (2011).

    Article  ADS  Google Scholar 

  16. Q. Niu, X. G. Zhao, G. A. Georgakis and M. G. Raizen, Phys. Rev. Lett. 76, 4504 (1996); M. Ben Dahan, E. Peik, J. Reichel, Y. Castin and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996); B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

    Article  ADS  Google Scholar 

  17. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Nature 415, 39 (2002).

    Article  ADS  Google Scholar 

  18. A. Derevianko and H. Katori, Rev. Mod. Phys. 83, 331 (2011).

    Article  ADS  Google Scholar 

  19. D. Jaksch and P. Zoller, Ann. Phys. (N.Y.) 315, 52 (2005).

    Article  ADS  MATH  Google Scholar 

  20. G. Watanabe and T. Maruyama, in Neutron Star Crust, edited by C. A. Bertulani and J. Piekarewicz (Nova, New York, 2012), Chap. 2, p. 23 (arXiv:1109.3511); T. Maruyama, G. Watanabe and S. Chiba, Prog. Theor. Exp. Phys. 1, 01A201 (2012) and references therein.

  21. G. Watanabe, G. Orso, F. Dalfovo, L. P. Pitaevskii and S. Stringari, Phys. Rev. A 78, 063619 (2008).

    Article  ADS  Google Scholar 

  22. G. Watanabe, F. Dalfovo, F. Piazza, L. P. Pitaevskii and S. Stringari, Phys. Rev. A 80, 053602 (2009).

    Article  ADS  Google Scholar 

  23. G. Watanabe, F. Dalfovo, L. P. Pitaevskii and S. Stringari, Phys. Rev. A 83, 033621 (2011).

    Article  ADS  Google Scholar 

  24. G. Watanabe, S. Yoon and F. Dalfovo, Phys. Rev. Lett. 107, 270404 (2011).

    Article  Google Scholar 

  25. E. P. Gross, Nuovo Cimento 20, 454 (1961).

    Article  MATH  Google Scholar 

  26. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  27. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966), Chap. 5, p. 137.

    MATH  Google Scholar 

  28. M. Randeria, in Bose Einstein Condensation, edited by A. Griffin, D. Snoke and S. Stringari (Cambridge University Press, Cambridge, England, 1995), Chap. 15, p. 355.

  29. G. Bruun, Y. Castin, R. Dum and K. Burnett, Eur. Phys. J. D 7, 433 (1999)

    Article  ADS  Google Scholar 

  30. A. Bulgac and Y. Yu, Phys. Rev. Lett. 88, 042504 (2002).

    Article  ADS  Google Scholar 

  31. M. Grasso and M. Urban, Phys. Rev. A 68, 033610 (2003).

    Article  ADS  Google Scholar 

  32. Here, we use β = −0.41 predicted by the mean-field BdG theory. We notice that ab-initio Monte Carlo simulations give instead β ≃ −0.7 ∼ −0.55 (recent results are distributed around β ≃ −0.6). See, e.g., J. Carlson, S.-Y. Chang, V. R. Pandharipande and K. E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003); G. E. Astrakharchik, J. Boronat, J. Casulleras and S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004); O. Juillet, New J. Phys. 9, 163 (2007); D. Lee, Phys. Rev. C 78, 024001 (2008); T. Abe and R. Seki, Phys. Rev. C 79, 054003 (2009); P. Magierski, G. Wlazłowski, A. Bulgac and J. E. Drut, Phys. Rev. Lett. 103, 210403 (2009); J. Carlson, S. Gandolfi, K. E. Schmidt and S. Zhang, Phys. Rev. A 84, 061602 (2011). See also M. G. Endres, D. B. Kaplan, J-W. Lee and A. N. Nicholson, Phys. Rev. A 87, 023615 (2013) and references therein.

    Article  ADS  Google Scholar 

  33. G. Orso, L. P. Pitaevskii, S. Stringari and M. Wouters, Phys. Rev. Lett. 95, 060402 (2005).

    Article  ADS  Google Scholar 

  34. P. O. Fedichev, M. J. Bijlsma and P. Zoller, Phys. Rev. Lett. 92, 080401 (2004).

    Article  ADS  Google Scholar 

  35. H. Moritz, T. Stöferle, K. Günter, M. Köhl and T. Esslinger, Phys. Rev. Lett. 94, 210401 (2005).

    Article  ADS  Google Scholar 

  36. Here, the coarse-grained density \(\bar n\) and the averaged quasi-momentum \(\bar P\) are defined as the density and the quasi-momentum averaged over the unit cell.

  37. D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner and W. Ketterle, Phys. Rev. Lett. 99, 070402 (2007).

    Article  ADS  Google Scholar 

  38. M. Krämer, C. Menotti, L. Pitaevskii and S. Stringari, Eur. Phys. J. D 27, 247 (2003).

    Article  ADS  Google Scholar 

  39. L. D. Landau, J. Phys. USSR 5, 71 (1941).

    Google Scholar 

  40. P. Nozières and D. Pines, The Theory of Quantum Liquids (Perseus, Cambridge, 1999), Vol. II.

    Google Scholar 

  41. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, New York, 2008).

    Book  Google Scholar 

  42. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  43. N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).

    Google Scholar 

  44. R. Combescot, M. Yu. Kagan and S. Stringari, Phys. Rev. A 74, 042717 (2006).

    Article  ADS  Google Scholar 

  45. N. Andrenacci, P. Pieri and G. C. Strinati, Phys. Rev. B 68, 144507 (2003).

    Article  ADS  Google Scholar 

  46. R. Sensarma, M. Randeria and T-L. Ho, Phys. Rev. Lett. 96, 090403 (2006).

    Article  ADS  Google Scholar 

  47. B. Wu and Q. Niu, Phys. Rev. A 64, 061603(R) (2001).

    Article  ADS  Google Scholar 

  48. B. Wu and Q. Niu, New J. Phys 5, 104 (2003).

    Article  ADS  Google Scholar 

  49. P. Ring and P. Schuck, The Nuclear Many-body Problem (Springer, New York, 1980).

    Book  Google Scholar 

  50. We note that, within a 2D and a 3D tight-binding attractive (Fermi) Hubbard model, the bosonic excitation spectrum can show roton-like minima at nonzero quasimomentum [especially at k d = (π, π) in 2D and (π, π, π) in 3D] [51–54]. Softening of the roton-like mode, which causes the dynamical instability, can give the smallest critical quasi-momentum [53, 54]. The roton-like minima arise from strong charge-density wave fluctuations and these fluctuations are expected to be less favored in our system, where the gas is uniform in the transverse directions (3D gas in a 1D lattice).

  51. J. O. Sofo, C. A. Balseiro and H. E. Castillo, Phys. Rev. B 45, 9860 (1992).

    Article  ADS  Google Scholar 

  52. T. Kostyrko and R. Micnas, Phys. Rev. B 46, 11025 (1992).

    Article  ADS  Google Scholar 

  53. Y. Yunomae, D. Yamamoto, I. Danshita, N. Yokoshi and S. Tsuchiya, Phys. Rev. A 80, 063627 (2009).

    Article  ADS  Google Scholar 

  54. R. Ganesh, A. Paramekanti and A. A. Burkov, Phys. Rev. A 80, 043612 (2009).

    Article  ADS  Google Scholar 

  55. M. Machholm, C. J. Pethick and H. Smith, Phys. Rev. A 67, 053613 (2003).

    Article  ADS  Google Scholar 

  56. E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003).

    Article  ADS  Google Scholar 

  57. L. P. Pitaevskii, S. Stringari and G. Orso, Phys. Rev. A 71, 053602 (2005).

    Article  ADS  Google Scholar 

  58. We observe that, in the LDA hydrodynamic theory, n(z) and v(z) exhibit a kink at the point where v(z) = cs(z), with a finite jump in the first derivative and that one cannot construct a stationary solution for v(z) > cs(z).

  59. Yu. G. Mamaladze and O. D. Cheĭshvili, Zh. Eksp. Teor. Fiz. 50, 169 (1966) [Sov. Phys. JETP 23, 112 (1966)].

    Google Scholar 

  60. V. Hakim, Phys. Rev. E 55, 2835 (1997).

    Article  ADS  Google Scholar 

  61. P. Leboeuf, N. Pavloff and S. Sinha, Phys. Rev. A 68, 063608 (2003).

    Article  ADS  Google Scholar 

  62. M. Modugno, C. Tozzo and F. Dalfovo, Phys. Rev. A 70, 043625 (2004).

    Article  ADS  Google Scholar 

  63. C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999).

    Article  ADS  Google Scholar 

  64. R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur and W. Ketterle, Phys. Rev. Lett. 85, 2228 (2000).

    Article  ADS  Google Scholar 

  65. A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips and G. K. Campbell, Phys. Rev. Lett. 106, 130401 (2011).

    Article  ADS  Google Scholar 

  66. R. P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955).

    Article  Google Scholar 

  67. R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg and J. Dalibard, Nature Phys. 8, 645 (2012).

    Article  ADS  Google Scholar 

  68. S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo and M. P. Tosi, Phys. Rev. Lett. 86, 4447 (2001).

    Article  ADS  Google Scholar 

  69. L. De Sarlo, L. Fallani, J. E. Lye, M. Modugno, R. Saers, C. Fort and M. Inguscio, Phys. Rev. A 72, 013603 (2005).

    Article  ADS  Google Scholar 

  70. L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort and M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004).

    Article  ADS  Google Scholar 

  71. B. Wu, R. B. Diener and Q. Niu, Phys. Rev. A 65, 025601 (2002).

    Article  ADS  Google Scholar 

  72. D. Diakonov, L. M. Jensen, C. J. Pethick and H. Smith, Phys. Rev. A 66, 013604 (2002).

    Article  ADS  Google Scholar 

  73. B. T. Seaman, L. D. Carr and M. J. Holland, Phys. Rev. A 71, 033622 (2005); ibid. 72, 033602 (2005).

    Article  ADS  Google Scholar 

  74. I. Danshita and S. Tsuchiya, Phys. Rev. A 75, 033612 (2007).

    Article  ADS  Google Scholar 

  75. E. J. Mueller, Phys. Rev. A 66, 063603 (2002).

    Article  ADS  Google Scholar 

  76. We mainly present the result for s = V 0 /E R = 0.1 and E F /E R = 2.5 as an example, where E F = ħ2 k 2F /(2m) and k F = (3π 2 n 0)1/3 are the Fermi energy and the momentum of a uniform free Fermi gas of density n 0, respectively. These values fall in the range of parameters of feasible experiments [37].

  77. With the parameters used in Fig. 8(b), the incompressibility takes negative values in a small region around 1/k F a s = −0.55, which means that the system might be dynamically unstable against long-wavelength perturbations. If appropriate parameters are chosen, this region disappears.

  78. J. C. Bronski, L. D. Carr, B. Deconinck and J. N. Kutz, Phys. Rev. Lett. 86, 1402 (2001); J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz and K. Promislow, Phys. Rev. E 63, 036612 (2001).

    Article  ADS  Google Scholar 

  79. This result is exact only when the swallowtails exist; otherwise, it is approximate, but qualitatively correct.

  80. P. Pieri and G. C. Strinati, Phys. Rev. Lett. 91, 030401 (2003).

    Article  ADS  Google Scholar 

  81. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

    Article  ADS  Google Scholar 

  82. T. Stöferle, H. Moritz, C. Schori, M. Köhl and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004); M. Köhl, H. Moritz, T. Stöferle, C. Schori and T. Esslinger, J. Low Temp. Phys. 138, 635 (2005); I. B. Spielman, W. D. Phillips and J. V. Porto, Phys. Rev. Lett. 98, 80404 (2007).

    Article  ADS  Google Scholar 

  83. R. Jördens, N. Strohmaier, K. Günter, H. Moritz and T. Esslinger, Nature 455, 204 (2008).

    Article  ADS  Google Scholar 

  84. U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch and A. Rosch, Science 322, 1520 (2008).

    Article  ADS  Google Scholar 

  85. S. Sachdev, K. Sengupta and S. M. Girvin, Phys. Rev. B 66, 075128 (2002).

    Article  ADS  Google Scholar 

  86. J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss and M. Greiner, Nature 472, 307 (2011); R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon and M. Greiner, Phys. Rev. Lett. 107, 95301 (2011).

    Article  ADS  Google Scholar 

  87. L. Sanchez-Palencia and M. Lewenstein, Nature Phys. 6, 87 (2010) and references therein.

    Article  ADS  Google Scholar 

  88. A. Eckardt, C. Weiss and M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005); H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007); J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger and K. Sengstock, Science 333, 996 (2011).

    Article  ADS  Google Scholar 

  89. A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011) and references therein.

    Article  ADS  Google Scholar 

  90. J. Dalibard, F. Gerbier, G. Juzeliùnas and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011) and references therein.

    Article  ADS  Google Scholar 

  91. M. Müller, S. Diehl, G. Pupillo and P. Zoller, Adv. At. Mol. Opt. Phys. 61, 1 (2012) and references therein.

    Article  ADS  Google Scholar 

  92. F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo and G. M. Tino, Phys. Rev. A 79, 013409 (2009) and references therein.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gentaro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, G., Yoon, S. Aspects of superfluid cold atomic gases in optical lattices. Journal of the Korean Physical Society 63, 839–857 (2013). https://doi.org/10.3938/jkps.63.839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.839

Keywords

Navigation