Skip to main content
Log in

Computational analysis of movement behaviors of medaka (Oryzias latipes) in response to chemical and thermal stressors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Response behaviors of medaka (Oryzias latipes) were computationally analyzed after exposure to a temperature increase and toxic treatments. The temperature was increased from 25 °C to 35 °C while individual organisms of medaka were treated with copper at a low concentration (1.0 mg/L). Movement tracks were continuously recorded for 6 hours before and for 6 hours after the treatments. Parameters (e.g., speed and stop number) and entropy values (e.g., Shannon entropy and Réyni entropy) characterizing the movement tracks were calculated before and after the treatments. After the temperature increase, parameters and entropy values remained in the same range. Test organisms appeared to adapt to a gradual temperature increase to maintain the same behavioral state. After the treatments with copper, however, parameters such as speed, acceleration and stop number substantially decreased while the turning rate increased. Entropy values such as Shannon and Réyni entropies were lower while Simpson index was higher after the chemical treatments. Complexity residing in the movement tracks appeared to decrease after the treatment with a chemical. According to the self-organizing map results, entropy values were associated with speed and acceleration. The parameter (speed) and the entropy value (Shannon entropy) changed in different time periods after the chemical treatment. The periodicity in entropy was not different between the early and the late periods after the treatments according to fast Fourier transform. The feasibility of computational monitoring and the structure property in the behavioral data were further discussed regarding ecological assessment of environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Ji, H. Lee, K. H. Choi, I. S. Kwak, S. G. Lee, E. Y. Cha, S. K. Lee and T-S. Chon, Int. J. Ecodyn. 2, 1 (2007).

    Article  Google Scholar 

  2. Y. Liu and T-S. Chon, J. Korean Phys. Soc. 56, 1003 (2010).

    Article  Google Scholar 

  3. Y. Liu and T-S. Chon, Mod. Phys. Lett. B 25, 1133 (2011).

    Article  ADS  Google Scholar 

  4. Y. Liu, S-H. Lee and T-S. Chon, Ecol. Modell. 222, 2191 (2011).

    Article  Google Scholar 

  5. T. V. Nguyen, Y. Liu, I-H. Jung and T-S. Chon, Mod. Phys. Lett. B 25, 1143 (2011).

    Article  ADS  Google Scholar 

  6. I-S. Kwak, T-S. Chon, H. M. Kang, N. I. Chung, J. S. Kim, S. C. Koh, S. K. Lee and Y. S. Kim, Environ. Pollut. 120, 671 (2002).

    Google Scholar 

  7. Y-S. Park, N-I. Chung, K-H. Choi, E. Y. Cha, S-K. Lee and T-S. Chon, Aquat. Toxicol. 71, 215 (2005).

    Article  Google Scholar 

  8. C. W. Ji, S. H. Lee, I-S. Kwak, E. Y. Cha, S-K. Lee and T-S. Chon, Environmental Toxicology (WIT, Southampton and Mykonos, 2006).

    Google Scholar 

  9. S-H. Lee and T-S. Chon, J. Insect Sci. 11, 80 (2011).

    Article  Google Scholar 

  10. R. Cannon, Global Change Biol. 4, 785 (1998).

    Article  Google Scholar 

  11. J. S. Bale et al., Global Change Biol. 8, 1 (2002).

    Article  Google Scholar 

  12. S. Fabrizio, Anim. Behav. 66, 1109 (2003).

    Article  Google Scholar 

  13. K. M. Silva, M. N. Vieira, V. C. Almada and N. M. Monteiro, Anim. Behav. 74, 1525 (2007).

    Article  Google Scholar 

  14. S. P. Hazell, B. P. Neve, C. Groutides, A. E. Douglas, T. M. Blackburn and J. S. Bale, J. Insect Physiol. 56, 123 (2010).

    Article  Google Scholar 

  15. M. K. Tourtellot, R. D. Collins and W. J. Bell, J. Theor. Biol. 150, 287 (1991).

    Article  Google Scholar 

  16. A. R. Johnson, B. T. Milne and J. A. Wiens, Ecology 73, 1968 (1992).

    Article  Google Scholar 

  17. J. A. Wiens, T. O. Crist and B. T. Milne, Environ. Entomol. 22, 709 (1993).

    Google Scholar 

  18. J. A. Weins, T. O. Crist, K. A. With and B. T. Milne, Ecology 79, 663 (1995).

    Article  Google Scholar 

  19. Environmental Protection Agency, http://www.epa.gov/ost/pc/ambientwqc/copper1984.pdf (1984).

  20. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

    MathSciNet  MATH  Google Scholar 

  21. A. Réyni, in Proceeding of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (Berkeley, California, June 20–July 30, 1960), p. 547.

  22. H. T. Odum, Systems Ecology (Wiley, Interscience, 1983).

    Google Scholar 

  23. A. S. Wittbrodt and M. Schartl, Nat. Rev. Genet. 3, 53 (2002).

    Article  Google Scholar 

  24. M. Westerfield, The Zebrafish Book (University of Oregon Press, Eugene, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Soo Chon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, C.W., Kim, H., Park, YS. et al. Computational analysis of movement behaviors of medaka (Oryzias latipes) in response to chemical and thermal stressors. Journal of the Korean Physical Society 60, 570–575 (2012). https://doi.org/10.3938/jkps.60.570

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.570

Keywords

Navigation