Skip to main content
Log in

Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Tourmaline gemstones have an extremely complex composition and show great variety in color. Most color centers are related to transition-metal ions. Oxidation/reduction of these ions is known to be related with the color enhancement of tourmaline caused by gamma-ray (γ)-irradiation and/or thermal treatment. However, the current understanding of the microscopic structure of the color centers remains weak. In this work, γ-irradiation was performed on three types of tourmaline gemstones to enhance the colors of the gemstones: two pink from Afghanistan and one green from Nigeria. All three samples were irradiated at 600 and 800 kGy. Their crystal structural and chemical behaviors have been investigated by using a Rietveld refinement analysis of neutron diffraction data, Energy Dispersive X-ray Fluorescence (EDXRF), Ultraviolet-visible Spectroscopy (UV-Vis) and X-ray Photoelectron Spectroscopy (XPS), and the results were compared with data obtained for samples in the natural state. Pink tourmaline of a high number of Mn ions (T2, 0.24 wt%) showed significant improvement in the quality of the pink color (rubellite) after irradiation of 800 kGy while the pink tourmaline of low MnO content (T1, 0.08 wt%) showed color adulteration. Pink color enhancement in T2, responding to darker pink, was associated with increases in the two absorption bands, one peaking at 396 and the other at 522 nm, after irradiation. These absorption bands are ascribed to d-d transitions of divalent manganese. T1 with color enhancement due to oxidation of Mn2+ showed a slightly larger <Y-O> distance. The green tourmaline containing much higher amounts of both Mn (T3) and Fe ions, 2.59 wt% and 5.7 wt%, respectively, changed to a yellow color after irradiation at 800 kGy. The refined structural parameters of this sample revealed distortions in the Z site. The <Z-O> distance decreased from 2.033 to 2.0192 Å. In addition, the unit-cell parameter was decreased after irradiation. The color change in T3 is ascribed to a decrease in the absorption band’s intensity in the red color region (600 ∼ 750 nm). XPS measurement results also supported that the relative ratios of the Fe2+/Fe3+ [Fe3+ (Fe2p 3/2 711.2 and Fe2p 1/2 724.3 eV), Fe2+ (Fe2p 3/2 710.2 and Fe2p 1/2 722.8 eV)] and Mn2+/Mn3+ [Mn2+ (Mn2p 3/2 641.4 and Mn2p 1/2 652.3 eV), Mn3+ (Mn2p 3/2 641.9 and Mn2p 1/2 653.3 eV)] peak intensities were decreased after irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bosi, G. B. Andreozzi, M. Federico, G. Graziani and S. Lucchesi, Am. Mineral. 90, 1784 (2005).

    Article  Google Scholar 

  2. A. J. Lussier, F. C. Hawthorne, P. M. Aguiar, V. K. Michaelis and S. Kroeker, Period Mineral. 80, 57 (2011).

    Google Scholar 

  3. P. S. R. Prasad and D. S. Sarma, Gondzvana Res. 8, 265 (2005).

    Article  Google Scholar 

  4. M. J. Buerger, C. W. Burnham and D. R. Peacor, Acta Crystallogr. 15, 583 (1962).

    Article  Google Scholar 

  5. C. Casta˜neda, E. F. Oliveira, N. Gomes and A. C. P. Soares, Am. Mineral. 85, 1503 (2000).

    Article  Google Scholar 

  6. K. Krambrock, M. V. B. Pinheiro, S. M. Medeiros, K. J. Guedes, S. Schweizer and J. M. Spaeth, Nucl. Instrum. Meth. B 191, 241 (2002).

    Article  ADS  Google Scholar 

  7. B. J. Reddy, R. L. Frost, W. N. Martens, D. L. Wain and J. T. Kloprogge, Vib. Spectrosc. 44, 42 (2007).

    Article  Google Scholar 

  8. K. Nassau, Am. Mineral. 60, 710 (1975).

    Google Scholar 

  9. A. Ertl, J. M. Hughes, S. Prowatke, G. R. Rossman, D. London and E. A. Fritz, Am. Mineral. 88, 1369 (2003).

    Article  Google Scholar 

  10. G. R. Rossman and S. M. Mattson, Am. Mineral. 71, 599 (1986).

    Google Scholar 

  11. G. Donnay, Carnegie. Inst. Washington. Ann. Dir. Geophys. Lab. 8, 219 (1969).

    Google Scholar 

  12. P. G. Manning, Can. Mineral. 11, 971 (1973).

    Google Scholar 

  13. R. Leckebusch, Neu. Jb. Mineral, Abh. 133, 53 (1978).

    Google Scholar 

  14. M. B. De Camargo and S. Isotani, Am. Mineral. 73, 172 (1988).

    Google Scholar 

  15. P. J. Dunn, J. Gemmol. 14, 357 (1975).

    Google Scholar 

  16. M. N. Chaudhry and R. A. Howie, Mineral. Mag. 40, 747 (1976).

    Article  Google Scholar 

  17. G. H. Faye, P. G. Manning and J. R. Gosselin, Can. Mineral. 12, 370 (1974).

    Google Scholar 

  18. S. M. Mattson and G. R. Rossman, Phys. Chem. Minerals. 14, 163 (1987).

    Article  ADS  Google Scholar 

  19. M. N. Taran and G. R. Rossman, Am. Mineral. 87, 1148 (2002).

    Article  Google Scholar 

  20. I. M. Reinitz and G. R. Rossman, Am. Mineral. 73, 822 (1988).

    Google Scholar 

  21. C. Asvavijnijkulchai, S. Patchar and A. Sangariyavanich, Proceedings of the 5th Nuclear Science and Technology Conference, IAEA-INIS 27, B76 (Bangkok, Thailand, 21-23 November, 1994).

    Google Scholar 

  22. A. Sangariyavanich, S. Na Songkhla and S. Pimjum, Proceedings of the 7th Nuclear Science and Technology Conference, IAEA-INIS 30, 666 (Bangkok, Thailand, 1-2 December, 1998).

    Google Scholar 

  23. H. M. Rietveld, J. Appl. Cryst. 2, 265 (1969).

    Article  Google Scholar 

  24. A. Ertl et al., Am. Mineral. 97, 1402 (2012).

    Article  Google Scholar 

  25. Y. Ahn, J. Seo and J. Park, Vib. Spec. 65, 165 (2013).

    Article  Google Scholar 

  26. G. R. Rossman, E. Fritsch and J. E. Shigley, Am. Mineral. 76, 1479 (1991).

    Google Scholar 

  27. G. Smith, Phys. Chem. Minerals 3, 375 (1978).

    Article  ADS  Google Scholar 

  28. D. Zhu, J. Liang, Y. Ding, G. Xue and L. Liu, J. Am. Ceram. Soc. 91, 2588 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baek Seok Seong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneewong, A., Seong, B.S., Shin, E.J. et al. Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline. Journal of the Korean Physical Society 68, 329–339 (2016). https://doi.org/10.3938/jkps.68.329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.329

Keywords

Navigation