Skip to main content

Advertisement

Log in

Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and and its use for biotransformation of baicalin and wogonoside

  • Food Science/Microbiology
  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Scutellariae radix, the root of Scutellaria baiealensis, is a traditional medicinal herb containing baicalin and wogonoside as the main flavonoids. Before absorption, these flavonoids are metabolized into their corresponding aglycones, baicalein and wogonin, by β-glucuronidase produced by the intestinal microflora. To develop a method for efficient transformation of these flavonoids, optimal conditions for the production of β-glucuronidase from Lactobacillus delbrueckii Rh2 (Rh2) were determined. Addition of 4% galactose to basal medium increased the enzyme activity of Rh2 by about 8-fold. Optimal pH and temperature for the β-glucuronidase activity of cell extract were 5.0 and 50°C, respectively, and more than 95% of the enzyme activity was maintained at 60°C for 11 h. Under optimal conditions, more than 90% of the glycones were converted into their corresponding aglycones within 3 h. These results demonstrate that the transformation of baicalin and wogonoside from S. baicalensis by Rh2 would be useful for the efficient production of wogonin and baicalein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caldini G, Cenci G, and Strappini C (1999) Influence of amylase, amylopectin and pullulan on β-glucuronidase activity of starch-degrading Escherichia coli. World J Microbiol Biotechnol 15, 497–499.

    Article  CAS  Google Scholar 

  • Cenci G, Caldini G, and Strappini C (1998) Effect of different starches on Escherichia coli (S1) β-glucuronidase expression. J Basic Microbiol 38, 95–100.

    Article  CAS  Google Scholar 

  • Chang HM and But PPH (1987) In Pharmacology and Applications of Chinese Materia Medica, 2, pp. 1022–1027. World Scientific Publishing Co., Singapore, Singapore.

    Google Scholar 

  • Chang WH, Chen CH, and Lu FJ (2002) Different effects of baicalein, baicalin and wogonin on mitochondrial function, glutathione content and cell cycle progression in human hepatoma cell lines. Planta Med 68, 128–132.

    Article  CAS  Google Scholar 

  • Chouiter R, Roy I, and Bucke C (2008) Optimisation of βglucuronidase production from a newly isolated Ganoderma applanatum. J Mol Cat B: Enzymatic 50, 114–120.

    Article  CAS  Google Scholar 

  • Degnan BA and Macfarlane GT (1994) Synthesis and activity of α-glucosidase produced by Bifidobacterium pseudolongum. Curr Microbiol 29, 43–47.

    Article  CAS  Google Scholar 

  • Degnan BA and Macfarlane GT (1995) Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe 1, 103–112.

    Article  CAS  Google Scholar 

  • Drasar BS and Hill MJ (1974) In Human Intestinal Flora, pp. 53–167. Academic Press Inc. London, UK.

    Google Scholar 

  • Gao Z, Huang K, Yang X, and Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472, 643–650.

    Article  CAS  Google Scholar 

  • Huang RL, Chen CC, Huang HL, Chang CG, Chen CF, Chang C, and Hsieh MT (2000) Anti-hepatitis B virus effects of wogonin isolated from Scutellaria baicalensis. Planta Med 66, 694–698.

    Article  CAS  Google Scholar 

  • Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, and Kishimoto T (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55, 951–955.

    Article  CAS  Google Scholar 

  • Ishimaru K, Nishikawa K, Omoto T, Asai I, Yoshihira K, and Shimomura K (1995) Two flavone 2′-glucosides from Scutellaria baicalensis. Phytochemistry 40, 279–281.

    Article  CAS  Google Scholar 

  • Kim HS, Kim J Y, Park MS, Zheng H, and Ji GE (2009) Cloning and expression of β-glucuronidase from Lactobacillus brevis in E. coli and application in the bioconversion of baicalin and wogonoside. J Microbiol Biotechnol 19, 1650–1655.

    CAS  Google Scholar 

  • Kimuya Y, Kubo M, Tani T, Arichi S, and Okuda H (1981) Studies on Scutellariae Radix. I V. Effects on lipid peroxidation in rat liver. Chem Pharm Bull (Tokyo) 29, 2610–2617.

    Article  CAS  Google Scholar 

  • Kitamura K, Honda M, Yoshizaki H, Yamamoto S, Nakane H, Fukushima M, Ono K, and Tokunaga T (1998) Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res 37, 131–140.

    Article  CAS  Google Scholar 

  • Krahulec J and Krahulcova J (2007) Characterization of the new β-glucuronidase from Streptococcus equi subsp. zooepidemicus. Appl Microbiol Biotechnol 74, 1016–1022.

    Article  CAS  Google Scholar 

  • Kullin B, Abratt VR, and Reid SJ (2006) A functional analysis of the Bifidobacterium longum cscA and scrP genes in sucrose utilization. Appl Microbiol Biotechnol 72, 975–981.

    Article  CAS  Google Scholar 

  • Lampe JW and Chang JL (2007) Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol 17, 347–353.

    Article  CAS  Google Scholar 

  • Li W, Asada Y, and Yoshikawa T (2000) Flavonoid constituents from Glycyrrhiza glabra hairy root cultures. Phytochemistry 55, 447–456.

    Article  CAS  Google Scholar 

  • Matsuzaki Y, Kurokawa N, Terai S, Matsumura Y, Kobayashi N, and Okita K (1996) Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn J Cancer Res 87, 170–177.

    Article  CAS  Google Scholar 

  • Nishioka Y, Kyotani S, Miyamura M, and Kusunose M (1992) Influence of time of administration of a Shosaiko-to extract granule on blood concentration of its active constituents. Chem Pharm Bull (Tokyo) 40, 1335–1337.

    Article  CAS  Google Scholar 

  • Russell WM and Klaenhammer TR (2001) Identification and cloning of gusA, encoding a new β-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol 67, 1253–1261.

    Article  CAS  Google Scholar 

  • Scalbert A and Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8S Suppl), 2073S-2085S.

    CAS  Google Scholar 

  • Shieh DE, Liu LT, and Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20, 2861–2865.

    CAS  Google Scholar 

  • Trindade MI, Abratt VR, and Reid SJ (2003) Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol 69, 24–32.

    Article  CAS  Google Scholar 

  • Wakabayashi I (1999) Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages. Pharmacol Toxicol 84, 288–291.

    Article  CAS  Google Scholar 

  • Wu JA, Attele AS, Zhang L, and Yuan CS (2001) Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med 29, 69–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geun Eog Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, S., Zheng, H., Park, M.S. et al. Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and and its use for biotransformation of baicalin and wogonoside. J. Korean Soc. Appl. Biol. Chem. 54, 275–280 (2011). https://doi.org/10.3839/jksabc.2011.043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2011.043

Key words

Navigation