DOI QR코드

DOI QR Code

Optical Design of a Lister Objective Stable Against Chromatic Variation for 405-nm Wavelength

파장 405 nm에서 파장변화에 안정화된 Lister 대물렌즈 설계

  • Kim, Jin-Hyung (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Jong-Ung (Department of Laser and Optical Information Engineering, Cheongju University)
  • 김진형 (청주대학교 레이저광정보공학과) ;
  • 이종웅 (청주대학교 레이저광정보공학과)
  • Received : 2020.09.14
  • Accepted : 2020.10.12
  • Published : 2020.12.25

Abstract

A Lister objective of NA 0.25 and 10×, stabilized against chromatic variation for a wavelength of 405 nm is designed. We develop a new solution for stabilizing a cemented doublet that has specified axial thicknesses. Using the new method, we can easily obtain a useful design for some practical purpose. At the initial design stage, two cemented doublets corrected independently are used. The stabilizing conditions for the whole system are maintained during optimization. The final design of the Lister objective shows that the chromatic variation of EFL, BFL, and RMS wavefront errors are very small at the 405-nm wavelength, as expected.

NA 0.25, 10×이고, 파장 405 nm에서 파장변화에 대하여 안정한 Lister 대물렌즈를 설계하였다. 이 연구에서는 2매 접합렌즈에서 주어진 축상두께를 가지면서 파장변화에 대한 안정화 조건을 만족시키는 해를 찾는 방법에 대하여 연구하였으며, 이를 통하여 보다 쉽게 사용목적에 유용한 설계를 얻을 수 있다. 초기설계에서는 각각 독립적으로 안정화된 2개의 접합렌즈가 사용되었으며, 최적화에서는 전체 광학계에서 안정화 조건이 유지되도록 하였다. 최종설계에서는 기대한 바와 같이 파장 405 nm에서 파장에 따른 EFL, BFL, RMS wavefront error가 매우 적음을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 2019년도 청주대학교 연구장학의 지원으로 수행되었습니다.

References

  1. M. Laikin, Lens Design, 4th Ed. (CRC Press, NY, USA, 2006), Chapter 2.
  2. W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill Professional,NY, USA. 2000), Chapter 12.
  3. R. Kingslake and R. B. Johnson, Lens Design Fundamentals, 2nd Ed. (Academic Press, MA, USA, 2010), Chapter 5-10.
  4. S.-Y. Lee and J.-U. Lee, "Optical design of a collimator lens that is very stable against chromatic variation," Korean J. Opt. Photon. 28, 68-74 (2017). https://doi.org/10.3807/KJOP.2017.28.2.068
  5. J.-U. Lee, "New design method of stable lens system against chromatic variation based on paraxial ray tracing," Curr. Opt. Photon. 4, 23-30 (2020). https://doi.org/10.3807/COPP.2020.4.1.023
  6. H. Gross, F. Blechinger, and B. Achter, Handbook of Optical Systems: Survey of Optical Instruments (Wiley-VCH, Weinheim, Germany, 2008), Vol. 4, Chapter 42.
  7. Nikon, "Microscope components for fluorescence illumination and transmitted light applications," (Nikon Co., Jun. 2019), https://www.nikon.com/products/microscope-solutions/support/download/brochures/pdf/2ce-muzh-6.pdf (Accessed Date: January 7, 2020).
  8. Mitutoyo, "MICROSCOPE UNITS AND OBJECTIVES (UV, NUV, VISIBLE & NIR REGION)," (Mitutoyo, Optical Measuring, Catalog No. E14020) https://www.mitutoyo.co.jp/eng/support/service/catalog/04/E14020.pdf. (Accessed Date: January 7, 2020).
  9. W. J. Smith, Modern Lens Design: A Resource Manual (McGraw-Hill Professional, NY, USA, 1992), Chapter 7-16.
  10. K. D. Sharma, "Low power microobjective: a new design," Appl. Opt. 23, 2715-2717 (1984). https://doi.org/10.1364/AO.23.002715
  11. A. E. Conrady, Applied Optics and Optical design Part 2 (Dover Publications, NY, USA, 1960), pp. 379-401.
  12. Schott, "Optical Glass-Overview (Excel Table)," (Schott Inc., January 2018), https://www.schott.com/advanced_optics/english/download/index.html?wss_setorigin=1&wss_iso=ko-KR (Accessed Date: January 18, 2020)