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During the last years the theory of compressive sensing has found significant utility in the digital holography
realm. In this letter we summarize and extend our previous theoretical results which determine the relation
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1. Introduction
Digital holography (DH) provides an indirect frame-

work to capture the complex field amplitude of a wave-
front propagated from an object. Digital holography
is used in many areas including digital holographic mi-
croscopy, 3D macroscopic imaging, aberration correction,
holographic interferometry, quantitative phase imaging
of cells, object surface and tomographic imaging. The
incoming object wavefront is captured using a semicon-
ductor based device (such as CCD) and reconstructed
using numerical means on a computer[1].

In this work, we overview our previously published re-
sults which treat DH as a compressive sensing (CS)[2−4]

mechanism. Specifically, we overview and generalize our
previous results in Ref. [5] that relate the CS perfor-
mance with the DH setup and its components specifica-
tions. Here we generalize our theoretical results in Ref.
[5] to include different types of object illumination and
summarize the practical findings in an accessible form
for computational imaging and holography practitioners.

Compressive sensing theory asserts that one can re-
cover sparse signals from far fewer samples or measure-
ments than traditional methods require. The “compres-
sive” part relays on the signal’s sparsity assumption,
which expresses the idea that a signal can be repre-
sented using a low-dimensional mathematical model.
Indeed, typical holographic images are often composed
from small objects sparsely spread in the field-of-view, or
they can be mathematically transformed into a domain
in which their coefficients are sparsely distributed. The
”sensing” part relates to the physical mechanism which
projects the information from the object space to the
measurement space. In this paper, we consider the sim-
plest such mechanism, namely that of free space propaga-
tion. The propagated field can be simply recorded using
DH. The simplicity and yet effectiveness of this sensing
mechanism, makes it an attractive compressive sensing
choice[5], which can be used in scenarios of limited num-
ber of available sensor pixels, reconstruction of highly
distorted objects (including occluded objects) and infer-

ence of 3D object tomography from its 2D hologram[6].
In the compressive sensing framework, the signal is

recovered using algorithms from the family of ℓ1-norm
minimization solvers[2−4]. Several conditions which re-
late to the signal’s sparsity and the sensing operator
must apply in order to guarantee accurate and unique
solution. These sampling and recovering conditions are
formulated in CS literature via various mathematical
constructs, such as the restricted isometry principle[2]

and the null space condition[3]. Another practical re-
covery condition applicable for general sensing problems
is via what is known as the coherence parameter [2−4,7].
The coherence parameter can be used to link between
the number of sparse signal elements, S, and the number
of measurements, M , where the ambient dimension of
the signal to be recovered, N , is such that S < M 6 N .
In this work we evaluate the performance of three com-
pressive Fresnel DH setups by calculating the coherence
parameter of their sensing model.

2. Reconstruction guarantees for
randomly subsampled Fresnel
fields

Let us consider the case where one wishes to design a
sensing system that samples the object’s diffraction field
at some distance away from it using only a small number
of available detectors, placed uniformly at random in the
detector plane. Mathematically this is described as the
process of uniformly picking M out of N rows of Φ at
random, where Φ is an N × N matrix describing the
optical sensing operator in nominal sampling conditions.
The coherence parameter is given by[2−4,7]

µ = max
i,j

|〈ϕi, ψj〉| , (1)

where φi is a row vector of the sensing operator Φ, ψj is
a column vector of Ψ, which is the sparsifying operator
and 〈·, ·〉 denotes inner product operation. The coherence
parameter, µ, measures the incoherence, or dissimilarity,
between the sensing and the sparsifying operators. In the
common case that Φ and Ψ are orthonormal bases it can
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be shown that 1/
√
N 6 µ 6 1[2]. We note that in some

of the CS literature the coherence parameter is defined
by the expression in Eq. (1) multiplied with a factor of√
N , yielding 1 6 µ 6

√
N . In this paper, we follow

the definition in Eq. (1). For a given mutual coherence
parameter, the CS theory asserts that the signal can be
reconstructed from M uniformly at random projections,
provided that[2]

M > Cµ2NS logN. (2)

In the following, we shall consider the case Ψ = I, where
I is the canonical basis, i.e., the signal we wish to re-
construct is sparse in the space domain. More general
conditions will be discussed at the end of this section.

The input object, f(x, y), is illuminated by a plane
wave of wavelength λ, and the resultant object wavefield
propagates in free space till reaches the CCD, positioned
at a distance z away from the input plane, as illustrated
in Fig. 1. This object complex field amplitude interferes
with a reference wave, UR, which is required to allow the
extraction of the object’s complex field amplitude from
the captured intensity. Several methods may apply for
this holographic recording process, such as off-axis holog-
raphy and phase shifting holography[1]. After the com-
plex field amplitude extraction, our sensing operator, Φ,
accounts only for the free space propagation of the ob-
ject’s wavefield from the object to the sensor plane.

By applying the Fresnel transform as an approximation
to the free space propagation, we get

g(x, y) = f(x, y) ∗ exp

{

jπ

λz

(

x2 + y2
)

}

=exp

{

jπ

λz

(

x2 + y2
)

}
∫∫

f(ξ, η)

· exp

{

jπ

λz

(

ξ2 + η2
)

}

exp

{−j2π

λz
(xξ + yη)

}

dξdη.

(3)

where “∗” denotes convolution operation. Since in CS
framework the signal is numerically reconstructed, the
dependence of compressive digital holographic sensing on
the system parameters should be analyzed by inspecting
the numerical version of the Fresnel wave propagation.
Usually the Fresnel numerical approximation is divided
to near and far field numerical approximations[5,8]. The
numerical near field approximation is given by

g (p∆xo, q∆xo) =F−1
2D exp

{

−jπλz

(

m2

N∆x2
0

+
n2

N∆y2
0

)}

· F2D {f (l∆x0, k∆y0)} , (4)

where ∆x0, ∆y0 are object and CCD resolution pixel

Fig. 1. Digital Holographic recording of the free space prop-
agated field from an object illuminated by a plane wave.

size, with 0 6 p, q, k, l 6
√
N − 1 and F2D denotes the

2D Fourier transform. We assume that the sizes of the
object and of the sensor are

√
N∆x0 ×

√
N∆y0. The

near field model is valid for the regime where z 6 z0 =
max(

√
N∆x2

0/λ,
√
N∆y2

0/λ)
[6]. For the working regime

of z > z0 = max(
√
N∆x2

0/λ,
√
N∆y2

0/λ) the far field
numerical approximation is given by

g(p∆xz, q∆yz) = exp

{

jπ

λz

(

p2∆x2
z + q2∆y2

z

)

}

F2D

[

f(k∆x0, l∆y0) exp

{

jπ

λz

(

k2∆x2
0 + l2∆y2

0

)

}]

, (5)

where ∆xz = λz/(
√
N∆x0); ∆yz = λz/(

√
N∆y0) is the

output field’s pixel size.
In this case, the coherence parameter is given by[6,9]

µnear field = max
i

|φi| ≈ [∆x0∆y0/ (λz)] , (6)

where φi is a column vector (or PSF) of the matrix Φ,
which represents Eq. (5) in a matrix-vector multiplica-
tion form; g = Φf . Using Eq. (6) with Eq. (2), it can be
shown[5] that the number of compressive measurements
that are needed to accurately reconstruct the object is
given by

M > C′N2
F

S

N
logN, (7)

where NF denotes the recording device Fresnel
number[10] given by NF = N ∆x0∆y0

4λz
, and C′ is a small

constant factor[2,11]. Equation (7) determines that as
the working distance gets larger, NF decreases implying
that fewer samples are needed for accurate reconstruc-
tion. For the case that z > max(

√
N∆x2

0/λ,
√
N∆y2

0/λ)
the numerical near field approximation is not valid (see
Ref. [8]). In this case, we need to use the far field nu-
merical approximation [Eq. (5)], yielding the coherence
parameter[6]

µfar field = 1/
√
N. (8)

This is the smallest value that the mutual coherence can
get, therefore according to Eq. (2), the number of re-
quired measurements requires for exact reconstruction is
the smallest:

M > CS logN. (9)

This bound on the number of measurement remains con-
stant through the far field regime. It is possible to get
a physical intuition about this result by noticing that
the object’s diffraction pattern spatial spread is inversely
proportional to its Fresnel number. Thus, as we move
away from the object plane (and the Fresnel number de-
creases) each sample contains information about a larger
portion of the object. This implies that even if we dis-
card some of the samples, it is possible to reconstruct the
object because the missing information can be extracted
from other samples. Hence the signal can be accurately
reconstructed from less than N detectors.

In the above analysis, we have assumed that object
is sparse in the spatial domain. In the case where the
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object of interest is sparsely represented using a sparsify-
ing operator, which is different from the canonical basis,
e.g., it is sparse in wavelet transform or in its number of
gradients, it is practically difficult to derive exact closed
form expressions as those obtained in Eqs. (7) and (9).
However, a numerical investigation which was described
in Ref. [6] shows that the general behavior predicted
from Eqs. (7) and (9) also holds for cases where common
sparsifiers are applied.

3. Compressive digital holographic
sensing of spherically illuminated
objects

In many holographic applications, the object is illu-
minated by a spherical wavefront, especially in compact
microscopy (lensless) systems. This illumination condi-
tion is illustrated in Fig. 2. The object is illuminated
by a spherical wave originating form a point source at
distance zi from it.

In this case, the calculation of the coherence parameter
needs to be changed accordingly. The Fresnel approxi-
mation of a diverging spherical wave in the free space is
given by

g(x, y) = exp
(

jπ
x2 + y2

λzi

)

f(x, y) ∗ exp
(

jπ
x2 + y2

λz

)

= exp
(

jπ
x2 + y2

λz

)

∫ ∫

f(ξ, η)exp
(

jπ
ξ2 + η2

λ

(1

z
+

1

zi

))

· exp
{−j2π

λz
(xξ + yη)

}

dξdη. (10)

Using similar arguments that we have used for the pla-
nar illumination case, we can define the Fresnel kernel
sampling condition[8] (expressed for the 1D case, for sim-
plicity):

∆x2
0

λ

(

1

z
+

1

zi

)

<
1√
N
, (11)

Consequently, the working distance which defines the
limit between the near and far field numerical approx-
imation is given by

z =

√
N∆x2

0

λ−
√
N∆x2

0/zi

. (12)

As a further elaboration of previous work in Ref. [6],
using similar arguments used for the planar illumination
case [Eq. (6)], the coherence parameter for the diverging

Fig. 2. Digital Holographic recording of the free space propa-
gated field from an object illuminated by a diverging spherical
wave.

spherical illumination is found:

µdiverging
1D = max

i

∣

∣

∣
φdiverging

i

∣

∣

∣
≈ ∆x0/

√

λ

[

z × zi

z + zi

]

, (13)

where φdiverging
i is the column vector (or PSF) of the ma-

trix Φdiverging, which is the 1D matrix-vector represen-
tation of Eq. (10); g = Φdivergingf . As in the previous

case, in the far field approximation µdiverging
far field = 1/

√
N .

Extending our result in Eq. (13) to 2D yields[9]

µdiverging
2D ≈ ∆x∆

0 y0

λ
[

z×zi

z+zi

] . (14)

Note that by taking the limit zi → ∞ , Eq. (13) reduces
to the coherence parameter, µ, found in the planar field
illumination case [Eq. (6)].

Combining Eqs. (14) and (2), we find that the required
number of samples in the near field regime is given by

M > C

{

∆x0∆y0/λ

[

z × zi

z + zi

]}2

NS logN. (15)

This result can also be extended to converging spherical
wave illumination. In this case, the coherence parameter
is given by

µconverging
2D ≈ ∆x0∆y0

λ
[

z×zi

z−zi

] . (16)

It can be seen that by using convergent object illumina-
tion the mutual coherence can be reduced, thus yielding
higher compression [according to Eq. (2)]. This implies
that for applications with limited number of detector
pixels and that require proximity between the sample
and the detector, illuminating the object with a converg-
ing wavefront should be preferred.

4. Summary and conclusion

We have overviewed the reconstruction guarantees for
applying compressive Fresnel digital holography with dif-
ferent types of object illumination. The analysis reveals
the dependence of the amount of subsampling permitted
in the detector plane on the illumination type, wave-
length, working distance, sensor size and resolution, and
on the object’s spatial size and its resolution. We have
shown that for all types of object illumination, if the
sensor is placed far enough from the object, a maximum
compression is possible according to Eq. (9). However,
in the near field the number of samples which are re-
quired for accurate object reconstruction is proportional
to the coherence parameter. Table 1 summarizes the
values of the coherence parameter for various object il-
lumination conditions and the appropriate definition of
the numerical near field regimes.
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Table 1. Values of the Coherence Parameter for Various Object Illumination Conditions and the Appropriate
Definition of the Numerical Near Field Regimes

Numerical Near Field Coherence Parameter (µ2D) for

Approximation Condition Object to Detector Distance, z

Planar Illumination z 6 max(
√

N∆x2
0/λ,

√
N∆y2

0/λ) ∆x0∆y0

λz

Diverging Spherical Wave Illumination z < max(
√

N∆x2
0

λ−
√

N∆x2
0
/zi

,
√

N∆y2
0

λ−
√

N∆y2
0

/zi

) ∆x0∆y0

λ
[

z×zi

z+zi

]

Converging Spherical Wave Illumination z < (
√

N∆x2
0

λ+
√

N∆x2
0
/zi

,
√

N∆y2
0

λ+
√

N∆y2
0
/zi

) ∆x0∆y0

λ
[

z×zi

z−zi

]

These presented analytical guarantees can help to de-
sign ”compressible sensors” where the number of pixels is
much smaller than that dictated by the classical Nyquist
criterion. The sensing mechanism is the free space propa-
gation of the object’s wavefield, which is natural, requires
no special hardware to generate or store it and easy to
acquire. Reconstruction of free space propagation of
the object’s wavefield can also be beneficial for subsam-
pling mechanism which are not random, i.e., imposed
by physical attributes of the system. Such cases were
also described in Ref. [12] for reconstruction of par-
tially occluded objects, in Ref. [13] for reconstruction of
sub-pixel resolution movement estimation and in Refs.
[14–20] for high resolution 3D object tomography from
their single 2D hologram.
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