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A piece-wise transition detection algorithm that performs displacement measurements for self-mixing sen-
sors is developed. The algorithm can correctly detect self-mixing fringes at a low signal-to-noise ratio in
the presence of disturbances without filtering. Displacement reconstructions by the phase unwrapping
method based on this algorithm are experimentally validated, with laser subject to the moderate feedback
regime.
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As an emerging sensing technique, self-mixing interfer-
ometry (SMI) has attracted extensive research in the past
two decades[1]. SMI has practical advantages compared
with standard interferometry; for example, the former
does not require any optical parts external to laser chips
and can be used in various measurements[2]. SMI can
also be applied in different scientific and industry appli-
cations; these include measurements of vibrations[3−11],
flow speed[12−15], displacement[1,16−20], and absolute
distance[21−23]. It can also be used to characterize laser
parameters[24−26].

A basic SMI structure consists of a laser diode (LD),
a microlens, and a moving target, which forms an exter-
nal LD cavity. With a small portion of light backscat-
tered or reflected by the moving target reentering the
LD cavity, the amplitude and frequency of LD power are
modulated[27]. The power is monitored through a pho-
todiode (PD) enclosed in a typical LD package. At very
weak optical feedback levels (0<C<0.2), the self-mixing
(SM) signal is nearly a sine. At high injection levels
(0.2<C<1), the interferometric waveform exhibits mi-
nor distortions caused by sinusoidal behavior. At moder-
ate optical feedback (1<C <4.6), the waveform becomes
sawtooth-like and exhibits hysteresis. The SM signal is
converted into a fringe-free signal under the strong feed-
back regime.

The SM approach to displacement measurement is de-
sirable because it is applicable to diffusers and untreated
target surfaces, as well as serves as an alternative to the
use of a corner cube. This approach is also consider-
ably cheaper and simpler to operate. Literature indi-
cates that displacement measurements are generally per-
formed with laser subject to moderate feedback because
this regime is the most commonly encountered during
experiments[17,28]; furthermore, it can readily provide the
sign of displacement increments[2]. Donati et al.[28] de-
veloped a fringe counting method on the basis of the fact
that each fringe on a SM waveform corresponded to a
half-wavelength shift of a moving target. The method is
simple but achieves the resolution of only a half wave-
length for displacement measurement. In achieving high
resolution, an attractive approach is the phase unwrap-
ping method, which establishes unique mapping from the

SM waveform and the laser phase, after which it provides
accurate displacement. Merlo et al.[29] proposed a phase
unwrapping method based on a SMI sensing model with
a reconstruction accuracy of λ0/67 on a scale of tens of
nanometers. Despite the advantages of the approach,
however, it entails time-consuming estimation of C and
preliminary experimental calibration before the linewidth
enhancement factor can be evaluated. Bes et al.[17] pre-
sented a new reconstruction algorithm suitable for mod-
erate feedback, and estimated the C value by using an
optimization criterion based on the instantaneous power
of reconstructed signal discontinuities. This approach is
also time consuming[8] and vulnerable to noise. Fan et

al.[1] improved the accuracy of SMI for displacement mea-
surement by using an accurate feedback phase obtained
through the accurate identification of four characteristic
points and through an update of the C value on the basis
of reconstructed signal discontinuities.

In the phase unwrapping method, a straightforward ap-
proach to retrieving target displacement from the SM
signal involves two steps[17]. The first is obtaining the
feedback phase, and the second is determining the value
of C and calculating the target displacement. The key
point of the phase unwrapping method, therefore, is the
detection of SM signal fringes. Each missed and/or false
transition detection directly affects the accuracy of dis-
placement measurement by a factor of λ0/2. The SM
signal is usually differentiated to extract switchings as
pulses[28]. In Ref. [17], a precalculated threshold value
is used for transition detection, but this method works
well only for a specified regime and may cause erro-
neous detection as soon as the SM regime changes or in
the presence of noisy signals[30]. Wavelet transform was
then employed to improve the robustness of this detec-
tion method[31]. Moreover, transition detection has been
performed through computations of the Holder exponent
with the use of differential evolution algorithms[32]. This
process differentiates the shapes of noisy signals, thereby
enabling displacement recovery. Nevertheless, the ap-
proach involves very long computations. Zabit et al.[8]

proposed an algorithm that they improved by introducing
the adaptive transition detection method, which could
detect all SMI fringes by automatically converging to the
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optimal threshold. The improved algorithm can work at
weak and moderate feedback levels, but before the SM
signal can be used, the algorithm needs a prefilter while
the SM signal generated is noisy. Some filters can change
positions for some characteristic points, such as the sharp
transitions in a SM waveform[33]. A technique based on
“instantaneous” fringe-frequency determination was pro-
posed to correctly detect speckle-affected SM fringes at
a poor signal-to-noise ratio (SNR). This method is an
intrinsic average process of computing fringe duration
so that single spikes or signal losses do not significantly
affect measurement[4]. However, this method can be used
only for vibration measurement when target vibration is
sinusoidal.

This letter aims to correctly detect SM fringes at
low SNRs and in the presence of disturbances without
prefiltering. The detection is realized with the piece-wise
transition detection algorithm.

The theory that governs SMI has been described by
various authors and can be summarized as follows[17,34].
Let L(t) represent the instantaneous distance between
a LD, which is generally driven by a constant injection
current, and a remote target. When SM occurs, the laser
wavelength is no longer the constant λ0 but becomes a
function of time λF(t) under varying L(t). Wavelength
fluctuations can be found by solving the phase equation

x0(t) = xF(t) + C sin[xF(t) + arctan(α)], (1)

where α is the linewidth enhancement factor that lies
within the range[3−10]. This interval corresponds to the
extreme values taken by α for most of the LDs used in
sensing applications[35]. Figure 4 in Ref. [35] shows that
large variations are not characteristic of α; xF(t) and
x0(t) represent two phase signals with and without opti-
cal feedback, expressed as

xF(t) = 4πL(t)/λF(t), (2)

x0(t) = 4πL(t)/λ0. (3)

Optical output power fluctuation P (t) is therefore given
by

P (t) = P0[1 + m cos(xF(t))] = P0[1 + m · g(t)], (4)

where P0 is the emitted optical power under free-running
conditions, and m is the modulation index that depends
on the reflection coefficient of the target[36].

On the basis of Eq. (4), xr
F(t) is obtained by apply-

ing the inverse cosine function to g(t); that is, xr
F(t)=

arccos[g(t)]. The derivative of xr
F(t) is then compared

with a threshold value to ascertain the presence of tran-
sition (or a fringe) through a transition detector. The
value of the threshold level is critical for transition detec-
tion. With the need for a fully automated algorithm that
converges to the optimum threshold level, the fringes can
be correctly detected at a SM signal characterized by a
good SNR (Fig. 1(a)). Under a noisy signal (e.g., elec-
tronic preamplifier noise and quantum noise associated
with detected photons), however, the method causes er-
rors in transition. It also causes a false reconstruction
of displacement. Figure 1(b) shows that Gaussian white
noise with a SNR of 16 dB is incorporated into the SM
signal shown in Fig. 1(a). Two transitions are neglected

as shown by the red circle in Fig. 1(b).
Correctly detecting fringes from noisy SM signals ne-

cessitates improving the transition detection algorithm.
The principle of the piece-wise transition detection algo-
rithm is illustrated in Fig. 2.

Raw measurement data of about 5000 points, corre-
sponding to several periods of target oscillation, are ac-
quired. After the automatic gain control (AGC) of P (t)
is used to derive g(t) ranging over a± 1 interval, an arc
cosine function is employed to obtain xr

F(t). The deriva-
tive of xr

F(t), ∆xr
F(t), is then evenly divided into several

segments, such as k segments, which are expressed as
∆xr

F1(t), ∆xr
F2(t), · · ·, ∆xr

Fi(t), · · ·, ∆xr
Fk(t).

The transition of each segment is obtained by transi-
tion detection for segments (dotted box, Fig. 2). For the
moderate feedback regime, the upper and lower halves of
the SM signals (Fig. 1(a)) represent target displacement
away and toward the LD, respectively. Therefore, the
upper half of a hysteresis-affected SM signal (P (t)>0)
and the lower half (P (t) >0) are separately treated to
generate correct results. In the ith segment, the initial
threshold value of the upper half is 15% of the maximum
of ∆xr

Fi(t). The initial threshold value of the lower half is
15% of the minimum of ∆xr

Fi(t). That is, percent=0.15,
where percent is the ratio of the threshold value to the
maximum/minimum of ∆xr

Fi(t). For a correct threshold
value, only negative transitions should be obtained for

Fig. 1. (Color online) (a) Simulated SM signal with no noise
(blue) and its correct transition detection (green), (b) a noisy
SM signal (blue, SNR=16 dB) and its incorrect transition
detection (green).

Fig. 2. Piece-wise transition detection algorithm.
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the SM signal that corresponds to P >0[8]. If alternating
positive and negative transitions are obtained for P >0,
then the threshold is too low. Consequently, the thresh-
old is incremented by 5% of the maximum of ∆xr

Fi(t).
This loop continues until the threshold value becomes
sufficiently large to rule out the possibility of false tran-
sition detection for the positive half of the SM signals in
the moderate feedback regime. At P <0, only positive
transitions should be obtained. Therefore, the threshold
is decremented by 5% of the minimum of ∆xr

Fi(t) until
the threshold value becomes small enough to rule out the
possibility of false transition detection.

Then, all the transitions of each segment are con-
nected. When considering harmonic signals, kopt is de-
rived through the optimization of a criterion J(k) to es-
timate the optimal number of segments. This parameter
is written as

Argmin(J(k)) = Argmin
∑

n

tr(n), (5)

where tr(n), n ∈IN is the discrete form of tr(t), which is
the detected transition of the SM signal. The criterion
depends on the uniformity of target motion amplitude as
harmonic target movement is considered.

As shown in Fig. 3, the transitions of the SM sig-
nal shown in Fig. 1(b) are correctly detected by the
piece-wise transition detection algorithm. This newly
presented transition detection algorithm, incorporated
into phase unwrapping[17], is used for displacement re-
construction. A maximum absolute error of less than
120 nm is observed for the SM signal, under an assumed
LD of λ0=650 nm.

The piece-wise transition detection algorithm has been
theoretically validated for the variation of C from 1.0 to
4.6. The algorithm can correctly detect all SM fringes
even at a low SNR of 16 dB.

Simulated sinusoidal signals and harmonic displace-
ment signals have been correctly reconstructed by this
algorithm. Figure 4 presents a triangular displacement
signal, for which the vibrating amplitude is 3λ0 and the

Fig. 3. (Color online) (a) Correct transition detection
(kopt=3), (b) displacement excitation (green) and its recon-
struction (blue), and (c) the error generated by the excited
and reconstructed signals.

Fig. 4. (Color online) (a) Simulated SM signal and its correct
transition detection (kopt=4), (b) triangular displacement ex-
citation (green) and its reconstruction (blue), and (c) the error
generated by the excited and reconstructed signals.

Fig. 5. (a) Very noisy simulated SM signal and its transition
detection (SNR=15 dB), (b) displacement excitation and its
reconstruction, and (c) the error generated by the excited and
reconstructed signals.

SNR is 16 dB. The algorithm detects all the fringes in
this signal, with a maximum absolute error of approxi-
mately 0.2λ0.

The proposed algorithm cannot correctly detect all
fringes at low-quality SM signals, but it can detect tran-
sitions to minimize errors in displacement reconstruc-
tion. Figure 5 (SNR=15) indicates that the maximum
absolute error generated by the traditional transition de-
tection method is approximately 2.40 µm. False/missed
transitions are cumulative when the phase unwrapping
method is used for displacement reconstruction. The
phase unwrapping method supplies an incremental mea-
surement of displacement. Accordingly, the measure-
ment is incorrect if counting is lost because of transient
signal dropout. Previous false/missed transitions cause
drifting in the latter displacement reconstruction (Fig.
5(b)). However, the optimization of the criterion J(k)
depends on the minimum drift of an entire waveform.
Optimization reduces the overall reconstruction error.
The maximum absolute error is approximately 320 nm
at an assumed LD of λ0=650 nm (Fig. 6).

The proposed technique has also been verified with
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experimental data. The experimental setup is shown
in Fig. 7, which shows a metal plate fixed on a high-
precision piezoelectric transducer (PZT, PI, P517.3 CD).
The metal plate is used as the target. The proprietary
capacitive sensor of the PZT directly measures position
without physical contact at a resolution of 1 nm. The
output of this sensor is used as the reference vibration
amplitude (VA) measurement of actual target vibra-
tion amplitude. A low-cost, single-mode commercial LD
(QL65D5SA, QSI Co., Korea) with a 650-nm wavelength
is used for the SM sensor. This inexpensive laser source
is not an ideal candidate for a SMI because it exhibits a
low SNR under the SM effect. Most practical examples
of SM instruments use near-infrared LDs with power lev-
els of tens of milliwatts or distributed feedback LDs[3,8].
The advantages of a low-power red LD are its low cost
and good visibility for simple target aiming. Therefore,
the proposed technique is implemented to overcome this
noise problem. A variable attenuator is used to adjust
the fraction of light backreflected into the LD optical
cavity. The SM signal monitored by the PD in the
LD package is sent through a transimpedance amplifier
and then digitized with a data acquisition module (NI,
USB6251).

Fig. 6. (a) Transitions detected by the piece-wise transition
detection algorithm (SNR=15 dB, kopt=3), (b) displacement
excitation and its reconstruction, and (c) the error generated
by the excited and reconstructed signals.

Fig. 7. Experimental setup.

Fig. 8. (Color online) Experimental moderate feedback SM
signals with good SNRs (blue), and correct detection of all
SM fringes by the piece-wise transition detection algorithm
(green line) and by the classic transition detection algorithm
(red dot).

Fig. 9. (Color online) (a) Experimental moderate feedback
SM signal (blue) and its transition detection (green) (kopt=3),
and (b) reconstructed displacement.

Figure 8 shows examples of signal processing for SM
signals with good SNRs. The algorithm correctly detects
all the fringes in these signals. For a good SNR, the
results of the new algorithm are in optimum agreement
with those derived by the classic transition detection al-
gorithm.

For a poor SNR (Fig. 9), the moderate SM signal for p-
p target displacement is 3.652 µm with a target modula-
tion frequency of 10 Hz. All the SM fringes are again cor-
rectly detected without the need for filtering. Incorpo-
rating the algorithm into the phase unwrapping method
yields a final error of less than 1% with respect to the
reference PZT sensor. Using the same setup as the third
case (Fig. 8(c)), another SM signal is acquired (Fig.
10(a)) for a target displacement of 1.71 µm. Compared
with the previous signal (Fig. 9(a)), this signal exhibits
less hysteresis but a higher SNR. Nevertheless, the noise
is unevenly distributed and mutations occur. The algo-
rithm identifies all the transitions, thereby being able to
reconstitute displacement with an error of 37 nm at its
maxima with respect to the reference PZT sensor (Fig.
10(b)).
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Fig. 10. (Color online) (a) Experimental moderate feedback
SM signal with better SNR (green) and its transition detec-
tion (blue) (kopt=2), and (b) reconstructed displacement.

In conclusion, we propose a technique for improving the
measurement performance of a SM-based displacement
sensing system. The desired improvement is achieved by
using the proposed piece-wise transition detection algo-
rithm, which correctly detects transitions from noisy SM
signals without the need for prefiltering. The validity of
the method is demonstrated through signal simulation
and confirmed by several experimental measurements.
This new method is also consistent with the classic
transition detection algorithm when applied to inter-
ferometric signals of high quality (i.e., the same results
are generated). The features of this algorithm enable the
reduction of requirements for optical and electronic com-
ponent use in interferometers, thereby facilitating the
realization of high accuracy with simple and potentially
very low-cost instrumentation.
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