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Recently, nonlocal solitons have prompted extensive re-
search[1] because of their unique physical features, in 
many nonlinear materials, such as nematic liquid crys-
tals, thermal materials, atomic vapors[2], Bose–Einstein 
condensates, and photorefractive materials. In nonlinear 
optics, nonlocality means that the refractive index of a 
material at a particular point is not determined solely 
by the wave intensity at that point (as in local media) 
but also depends on the wave intensity in its neighbor-
hood[1]. Nonlocality can promote modulation instability 
in self-defocusing media, suppress modulation instabil-
ity in self-focusing media[3], prevent the catastrophic 
collapse of high-dimensional self-focusing beams[4], and 
provide attractive forces between dark solitons[5] which 
always repel in local media. Nonlocality also sustains a 
series of novel soliton states, such as stable multipole 
solitons[6], gap solitons[7], incoherent solitons[8], and vec-
tor solitons[9]. 

Circular vortices[10], associated with phase singulari-
ties in the center, have drawn considerable attention in 
nonlocal media[11–15]. Although the nonlocality can sta-
bilize the vortex solitons, their dynamics depend cru-
cially upon the actual forms of the nonlocal response 
function. In highly nonlocal media with Gaussian-type 
response function, there are no restrictions on the to-
pological charge of the stable ring vortex solitons[11,12]. 
With Helmholtz-type response function, only vortex 
solitons with single topological charge can be stable[12]. 
The stable vortex solitons with single charge has been 
experimentally observed in nonlocal media with ther-
mal optical nonlinearity[13].

In contrast to the degenerated circular symmetry, 
elliptic symmetry is more generalized, which offers 
more degrees of freedom. Elliptic bright solitons can 
be achieved by introducing anisotropic nonlinearity of 
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photorefractive crystals[16]. Experimental and theoreti-
cal works also have shown that elliptic bright solitons 
and twin-vortex solitons can be stable in thermal media 
with anisotropic nonlinearity[13]. It has been addressed 
that elliptically shaped vortex solitons can exist in 
defocusing nonlinear media imprinted with a compos-
ite Mathieu lattice[17], and can even exist in isotropic 
nonlocal nonlinear media[18]. In anisotropic nonlocal me-
dia, elliptic dipole-mode solitons[19] and spiraling elliptic 
solitons[20] have been discussed.

In this work, we investigate analytically and numeri-
cally elliptic vortex quasi-solitons in anisotropic nonlocal 
nonlinear media. The evolution of the elliptic vortex soli-
tons is also investigated. We find that the typical elliptic 
vortex solitons with single and double charges collapse 
into spiraling dipole- and tripole-like solitons, respectively.

Considering optical beams propagating in nonlocal 
media, the propagation of optical beams is governed by 
the following nonlocal nonlinear Schrödinger equations:
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where 2 2 2 2 2x y⊥∇ = ∂ ∂ + ∂ ∂  is the transverse La-
placian and R(x,y) is the normalized nonlocal re-
sponse function. In particular, the kernel R of 
the nonlocal response is determined by the nonlo-
cal process of actual physical system. For example, 
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scribes the nonlocal response of a dipolar Bose–Einstein  
condensate where the nonlocal character of the 
interatomic potential is due to a long-range interaction 



	 121901-2�

COL 12(12), 121901(2014) 	 CHINESE OPTICS LETTERS� December 10, 2014

of dipoles[14]. To make the problem solvable analytically, 
we assume the anisotropic nonlocal response function in 
the elliptic Gaussian form throughout this work.
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where σ is the width of the response function, which 
determines the degree of nonlocality. When σ → 0, we 
recover the local Kerr model, whereas we have the limit 
of strongly nonlocal nonlinear when σ → ∞. β is the 
elliptic parameter, and when β = 1 the response func-
tion returns to be isotropic, in which elliptically modu-
lated self-trapped singular beams have been discussed 
in detail[18]. The ellipticity of the response function is 

21be b= −  when 0 < β < 1. The circular response func-
tion corresponds to ɛβ → 0, whereas a strongly stretched 
elliptic one corresponds to ɛβ → 1.

Let us restate the problem of solving Eq. (1) as an 
Euler–Lagrange equation corresponding to the varia-
tional principle[21] of the Lagrangian density
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As we know, Hermite–Gaussian solitons, Laguerre–
Gaussian solitons[22], and Ince–Gaussian solitons[23] are 
exact solutions of the Snyder–Mitchell model (the lin-
ear model of the nonlocal nonlinear Schrödinger equa-
tion in the limit of strong nonlocality). Basically, one 
can assume the trial function in one form of them. For 
convenience in the variational calculations described 
below, we introduce the trial function of the elliptic 
vortex beam[24]
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where m denotes topological charge, A is the amplitude 
of the solution, μ is the propagation constant, and α is 
related to ellipticity of the beam. When 0 < α < 1, major 
axis is in y direction (Fig. 1(a)) and the ellipticity is 

21 ;ae a= −  while major axis is in x direction when  
α >1, and in this case, the behaviors of the beams agree 
with the case of 0 < α <1, so we consider only the case of 
0 < α <1 below. The elliptic hollow beam turns into ring 
vortex beam with α = 1. The total power of the elliptic 
vortex beam with the topological charge m is 
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So the total powers of the elliptic vortex beam with 
single charge (m = 1) and double charge (m = 2) are  

P10 = πA2w4/α and P20 = 2πA2w6/α, respectively. 
The integral widths of an optical beam along x and y 

directions are defined as
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It is worth mentioning that the value of <X > is zero 
for the present choice of u in Eq. (5). In this case, the 
integral widths of the elliptical vortex beams in two 
directions are
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according to the above definition. It is clear that wx < wy  
when α2 < 1 . The solitons will always feature the elliptic 
shape in the case of α ≠ 1.

According to Eqs. (2), (3), and (5), we can get the 
nonlinear refractive index in nonlocal media induced 
by the elliptical vortex beams with single and double 
charges. Based on the definition of the integral widths 
in Eq. (7), the widths of nonlinear refractive index 
along x and y directions are represented as
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for single charge (m = 1) and
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for double charges (m = 2), respectively. The corre-
sponding widths with double charges are always larger 
than the widths with single charge for the same σ, α, 
and β. We know the circular symmetry of the nonlin-
ear refractive index when α = β = 1. The nonlinear 
refractive index will also become circularly symmetric 
in the limit of high nonlocality (w << σ) with isotropic 
response function (β = 1). In the limit σ → 0, the cor-
responding widths of nonlinear refractive index along x 
and y directions are equal to the widths of the optical 
beams. As σ increases, the integral widths of nonlinear 
refractive index will also increase (Fig. 1).

�
Fig. 1 (a) Intensity distribution and (b–d) nonlinear refractive 
index of the elliptic vortex beam when the beam width param-
eter is w = 1. The degree of the nonlocality is σ = 0.1 for (b), 
σ = 1 for (c), and σ = 10 for (d). Here the parameters α = 0.7,  
β = 0.8. The topological charge is m = 1.
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the split step beam propagation method. The varia-
tional results are used as the initial input of our 
two-dimensional numerical code. In Fig. 3, we show 
the dynamics of the elliptic vortex solitons with single 
charge propagating in nonlinear media with different 
degrees of nonlocality. In all our simulations, we make 
the initial beam width w = 1. At typical set of the 
parameters α = 0.7 and β = 0.8, this elliptic vortex 
soliton is unstable in the anisotropic nonlocal media. 
The vortex beam splits into a dipole-like soliton with 
a repulsive force between its two lobes. The nonlocal-
ity cannot prevent the repulsion when the degree of 
nonlocality is weak (σ = 0.2) (Fig. 3(a)) and general (σ 
= 1.6) (Fig. 3(b)), and the two lobes of the dipole-like 
soliton will fly off. Increasing the degree of nonlocal-
ity can effectively improve the stability of the ellip-
tic vortex solitons (compare Figs. 3(a) and (b)). In 
the case of σ = 10, the strong nonlocality can induce 
an attractive force (Fig. 1(d)) to stabilize the vortex 
beam although it is not completely stable. As shown 
in Fig. 3(c), the elliptic vortex beam will split into a 
dipole soliton with anti-clockwise rotation firstly and 
then evolve into elliptic vortex beam. Subsequently, it 
splits into another dipole-like solitons with clockwise 
rotation and evolve into elliptic vortex beam again. 
Although the vortex beam may split into the dipole 
soliton during the propagation, the strong nonlocal-
ity can eliminate the repulsive tendency, leading to a 
quasi-stable elliptic vortex soliton.

In Fig. 1, we show the nonlinear refractive index in 
the case of weak σ = 0.1, general σ = 1, and strong 
nonlocality σ = 10, with the width parameter w = 1. As 
shown in Fig. 1, the strong nonlocality can average out 
all spatial variations of the beam intensity distribution, 
leading to the peak of the nonlinear refractive index 
in the center even though there is a singularity in the 
center of the elliptic beam. Thus the strong nonlocality 
induces a smooth and attractive potential, resulting in 
the stabilization of the elliptic beam.

Substituting Eqs. (3) and (5) into (4), an effective 
Lagrangian is obtained by integrating the average La-
grangian density in the whole two-dimensional spatial 
coordinates

	 r rd d .L L L x y
+∞ +∞

−∞ −∞
= = ∫ ∫ � (12)

Based on the Euler–Lagrange equations, we obtain the 
following ordinary differential equation to describe the 
evolution dynamics of the beam widths in nonlocal me-
dia when the topological charge m = 1, 2:
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where Q1 and Q2 are related to the nonlinear terms in 
the evolution equation for single and double charges, 
and are complicated functions of the parameters α, β, 
w, and σ, which we are not going to address here. 

Solutions of elliptic vortex solitons can be obtained 
by setting d2w/dz2 = 0 and w(z) = w(0) = w0, which 
represents that the beam keeps its initial widths. Then  
Eq. (13) leads to the critical powers of such elliptic vor-
tex soliton with single and double charges
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where 
010 1 |w wQ Q ==  and 

020 2 | .w wQ Q ==  We define the 
relative difference of the critical powers between the soli-
tons with single and double charges as ƞ = (P2c - P1c)/P2c.  
In Fig. 2, we plot the critical power of elliptic vortex 
solitons P1c with single charge (the case of m = 2 can 
be obtained in the same way) versus the parameters 
α and β (Fig. 2(a)). As α increases, the critical power 
will increase, whereas P1c will decrease with increasing 
β. These results indicate that the critical power will in-
crease with the increase in the ellipticity of the nonlocal 
response function but decrease with the increase in the 
ellipticity of the elliptic vortex beams. It can be seen 
from Fig. 2(b) that the critical power of elliptic vor-
tex solitons with single charge is always smaller than 
that of double charges, which shows that the vortex 
with larger topological charge requires larger power to 
maintain its initial profile. As the degree of nonlocality 
increases, the relative difference ƞ between two critical 
powers gets smaller until it vanishes in highly nonlocal 
nonlinearity (Fig. 2(c)).

Next, we integrate Eq. (1) to investigate the sta-
bility and dynamics of the elliptic vortex solitons by 

� 
Fig. 2 (a) Critical power of the stationary elliptic vortex soli-
tons as a function of the eccentricity parameters α and β with 
single charge m = 1. (b) Critical powers with different topologi-
cal charges m = 1 and m = 2. (c) the relative difference between 
the critical powers of m = 1 and m = 2. Here the parameters are 
(a, b) σ = 10, (b) α = 0.5. The width parameter is fixed at w = 1.

Fig. 3. Dynamics and evolution of the elliptic vortex beams 
with single charge for the degree of nonlocality of: (a) σ = 0.2, 
(b) σ = 1.6, and (c) σ = 10 when α = 0.7 and β = 0.8.
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solitons will not decay into dipoles during the evolu-
tion. As α goes up to 1, the elliptic vortex solitons are 
getting more and more stable (Fig. 5). We can see that 
when α = 0.95, the elliptic vortex solitons are nearly 
stable. For ring vortex solitons in anisotropic Kerr non-
linear media, it is found that when β is bigger than 
0.995, the circular vortex will not decay into dipoles 
(Figs. 6(a) and (b)). As an example, we display evo-
lution of circular vortex solitons in anisotropic me-
dia in Fig. 6, for three β values, 0.992, 0.996, and 1.  
It is very clear that as β increases, the stability of circu-
lar vortex solitons gets much better. 

In conclusion, we study analytically and numerically 
the self-trapping of elliptic vortex quasi-solitons in nonlo-
cal nonlinear media with anisotropic Kerr nonlinearity. 
Using the variational approach, the existence of the ellip-
tic vortex quasi-solitons is addressed. It is found that the 
elliptic vortex quasi-solitons are determined by the ec-
centricity of both the input beam and nonlocal response 
function. The evolution of the elliptic vortex solitons is 
also investigated numerically based on the split step beam 
propagation method. We find that the typically elliptic 
vortex solitons with single and double charges collapse 
into spiraling dipole and tripole-like solitons, respectively.
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