中国激光, 2021, 48 (8): 0802005, 网络出版: 2021-04-13   

p型氧化铜纳米线的飞秒激光纳米连接 下载: 1050次

Nanojoining of p-Type Copper Oxide Nanowires Using Femtosecond Laser
作者单位
1 清华大学机械工程系, 北京 100084
2 太原理工大学材料科学与工程学院, 山西 太原 030024
3 瑞士联邦材料科学与技术研究所, 苏黎世 杜本多夫 8600
摘要
纳米线的空间定位与接头连接对制备和组装高性能的纳米功能单元至关重要,开发新材料体系的高性能互连结构一直是研究重点之一。使用单脉冲能量密度为22.3 mJ/cm 2的聚焦飞秒激光成功实现p型氧化铜(CuO)纳米线之间的互连,聚焦激光能量场会由CuO纳米线的几何效应在接头处产生局域场增强效应,在纳米线接头的界面处发生原子扩散,促使CuO互连结构在施加偏压为10 V的情况下所获得的电流响应强度较连接前提升3个数量级以上,达到与母材相同的水平,基于该结构的光电探测器在功率为25.3 mW卤素灯照射的条件下获得与母材性能一致的电流增幅比值。所得结果为制备基于纳米连接的小型化、高性能和多功能化的纳米线网络单元奠定基础。
Abstract

Objective With the rapid development of nanotechnology, new devices are gradually developing toward miniaturization, complexity, multimaterial, and multifunction. Selective nanojoining of nanowires is essential for the fabrication and assembly of high-performance functional nanounits. The development of good quality nanojoined structures based on new material systems has attracted considerable attention. Owing to its high peak power and small heat-affected zone, the femtosecond laser has unique advantages in accurate selective nanojoining. It is difficult to choose the parameters of laser processing joint fabrication, and material selection of nanowires, thus far, laser irradiation has only realized the nanojoining of metal-metal nanowires, metal-semiconductor nanowires, and n-n type semiconductor nanowires. The nanojoining system of nanowires under laser irradiation is still imperfect and needs further improvement. Therefore, we propose a method to successfully nanojoin two p-type copper oxide (CuO) nanowires using the local energy field of femtosecond laser with high spatial and temporal accuracy. Simultaneously, we investigate the influence of different femtosecond laser energy inputs on the interconnection joint and fabricate optoelectronic devices based on the nanojoined structure. The results show that the electrical response and photoelectric properties of the nanowire structure fabricated under femtosecond laser irradiation are significantly improved compared with those before nanojoining and can reach the level of the base material on electric properties.

Methods The CuO joints are prepared using the dry transfer method. The nanowires are ultrasonically dispersed into an ethanol solution and spread on the surface of a polydimethylsiloxane(PDMS) film. The suitable target nanowires are obtained using an optical imaging system and aligned with the test electrode of the substrate using light transmittance of the film. The substrate is heated to 120 ℃ and held for 10--20 min to ensure that homogeneous joint of CuO nanowires is formed at the designated position on the substrate. (Fig.1(a)--(f)). The femtosecond laser is focused on the surface of the sample using a focusing microscope, and a CCD camera is used for real-time observation to ensure that the laser spot is focused accurately at the joint (Fig.1(g)). The continuous adjustment of laser power is achieved using a polarizer. The main characterization methods include a scanning electron microscope (SEM, Zeiss Supra 55), transmission electron microscope (TEM,JEM-2100F), and energy dispersive spectrometer (EDS). COMSOL Multiphysics 5.4 is used for simulation software, and Keithley 2636B is used for electrical tests.

Results and Discussions The prepared CuO nanowires are cylindrical with diameters ranging from 100--250 nm (Fig. 2). SEM is used to observe the morphology of CuO nanowire joints under different femtosecond laser parameters. When the single pulse energy density of the laser reaches 22.3 mJ/cm 2, the melting and wetting of the nanowires can be observed at the joint while the two base CuO nanowires remain intact, and almost no damage occurs, indicating that femtosecond laser can nanoweld two CuO nanowires with a minimal heat-affected zone (Fig.3(a)(d)). When the laser energy density is increased to 27 or 30 mJ/cm 2, a partial ablation or fracture of nanowires occurs, respectively, resulting in joint failure (Fig. 3 (e) and Fig. 3 (f)). The light field enhancement caused by geometric factors occurs at the contact area of nanowires by simulating the electric field distribution under laser irradiation using COMSOL, which is conducive to forming joints with a minimal heat-affected zone while nanojoining (Fig.4). The current response of the CuO homojunction device fabricated using this method is more than three orders of magnitude higher than that of the sample without nanojoining at 10 V bias, indicating that the properties of the nanowelded device are restored to the base material level (Fig. 5 and 6). CuO is a common optical sensing material. After femtosecond laser nanojoining, the fabricated CuO homojunction photoelectric sensor reaches the photoelectric performance of the base material, and the current growth ratio under 25.3 mW halogen lamp irradiation is the same as that of the base CuO nanowire (Fig.7).

Conclusions In this paper, we have successfully achieved the nanojoining between two p-type semiconductor CuO nanowires by combining the method of dry transfer and femtosecond laser irradiation. Under the influence of the laser energy field, the cylindrical CuO nanowires generate local energy field enhancement at the contact area due to the geometric factors, promoting the nanowelded joint formation with the minimal heat-affected zone. Under laser irradiation with a single pulse energy density of 22.3 mJ/cm 2, atomic-scale diffusion occurs at the joint of CuO nanowires to form a wetting structure, which transits the contact condition of nanowires from point contact to surface contact, greatly reduces the interface barrier, and widens the carrier transmission channel. This process increases the current level by more than three orders of magnitude compared with samples without nanojoining at 10 V bias, which almost reaches the current level of the base material. The photodetector based on the nanowelded structure obtains the same current growth ratio as that of the base material under a power of 25.3 mW of a halogen lamp. This study broadens the material system of semiconductor nanowires, which can be nanowelded, and provides a basis for the fabrication of miniaturized, high-performance, and multifunctional nanowire networks nanojoining.

肖宇, 霍金鹏, 孙天鸣, 邢松龄, 沈道智, 林路禅, 邹贵生. p型氧化铜纳米线的飞秒激光纳米连接[J]. 中国激光, 2021, 48(8): 0802005. Yu Xiao, Jinpeng Huo, Tianming Sun, Songling Xing, Daozhi Shen, Luchan Lin, Guisheng Zou. Nanojoining of p-Type Copper Oxide Nanowires Using Femtosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(8): 0802005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!