Skip to main content
Log in

Alpha-band sensory entrainment improves audiovisual temporal acuity

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Visual and auditory stimuli are transmitted from the environment to sensory cortices with different timing, requiring the brain to encode when sensory inputs must be segregated or integrated into a single percept. The probability that different audiovisual (AV) stimuli are integrated into a single percept even when presented asynchronously is reflected in the construct of temporal binding window (TBW). There is a strong interest in testing whether it is possible to broaden or shrink TBW by using different neuromodulatory approaches that can speed up or slow down ongoing alpha oscillations, which have been repeatedly hypothesized to be an important determinant of the TBWs size. Here, we employed a web-based sensory entrainment protocol combined with a simultaneity judgment task using simple flash-beep stimuli. The aim was to test whether AV temporal acuity could be modulated trial by trial by synchronizing ongoing neural oscillations in the prestimulus period to a rhythmic sensory stream presented in the upper (∼12 Hz) or lower (∼8.5 Hz) alpha range. As a control, we implemented a nonrhythmic condition where only the first and the last entrainers were employed. Results show that upper alpha entrainment shrinks AV TBW and improves AV temporal acuity when compared with lower alpha and control conditions. Our findings represent a proof of concept of the efficacy of sensory entrainment to improve AV temporal acuity in a trial-by-trial manner, and they strengthen the idea that alpha oscillations may reflect the temporal unit of AV temporal binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data and materials for this study are available upon request to the authors.

References

  • Albouy, P., Martinez-Moreno, Z. E., Hoyer, R. S., Zatorre, R. J., & Baillet, S. (2022). Supramodality of neural entrainment: Rhythmic visual stimulation causally enhances auditory working memory performance. Science Advances, 8(8), Article eabj9782.

    PubMed  Google Scholar 

  • Bauer, A. K. R., Debener, S., & Nobre, A. C. (2020). Synchronisation of neural oscillations and cross-modal influences. Trends in Cognitive Sciences, 24(6), 481–495.

    PubMed  PubMed Central  Google Scholar 

  • Bastiaansen, M., Berberyan, H., Stekelenburg, J. J., Schoffelen, J. M., & Vroomen, J. (2020). Are alpha oscillations instrumental in multisensory synchrony perception? Brain Research, 1734, Article 146744.

    PubMed  Google Scholar 

  • Bedard, G., & Barnett-Cowan, M. (2016). Impaired timing of audiovisual events in the elderly. Experimental Brain Research, 234(1), 331–340.

    PubMed  Google Scholar 

  • Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ, 8, Article e9414.

    PubMed  Google Scholar 

  • Buhrmester, M., Kwang, T., & Gosling, S. D. (2016). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality data? Perspectives on Psychological Science, 6(1), 3–5. https://doi.org/10.1177/17456916103939

    Article  Google Scholar 

  • Buergers, S., & Noppeney, U. (2022). The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6(5), 732–742.

    PubMed  PubMed Central  Google Scholar 

  • Cecere, R., Rees, G., & Romei, V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. Current Biology, 25(2), 231–235.

    PubMed  PubMed Central  Google Scholar 

  • Cecere, R., Gross, J., & Thut, G. (2016). Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality. European Journal of Neuroscience, 43(12), 1561–1568.

    PubMed  Google Scholar 

  • Cecere, R., Gross, J., Willis, A., & Thut, G. (2017). Being first matters: Topographical representational similarity analysis of ERP signals reveals separate networks for audiovisual temporal binding depending on the leading sense. Journal of Neuroscience, 37(21), 5274–5287.

    PubMed  Google Scholar 

  • Chiang, A. K. I., Rennie, C. J., Robinson, P. A., Van Albada, S. J., & Kerr, C. C. (2011). Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 122(8), 1505–1517.

    PubMed  Google Scholar 

  • Coldea, A., Veniero, D., Morand, S., Trajkovic, J., Romei, V., Harvey, M., & Thut, G. (2022). Effects of rhythmic transcranial magnetic stimulation in the alpha-band on visual perception depend on deviation from alpha-peak frequency: Faster relative transcranial magnetic stimulation alpha-pace improves performance. Frontiers in Neuroscience, 16, 886342. https://doi.org/10.3389/fnins.2022.886342

    Article  PubMed  PubMed Central  Google Scholar 

  • Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window-of-integration model. Journal of Cognitive Neuroscience, 16(6), 1000–1009.

    PubMed  Google Scholar 

  • Conrey, B., & Pisoni, D. B. (2006). Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. The Journal of the Acoustical Society of America, 119(6), 4065–4073.

    PubMed  Google Scholar 

  • Cooke, J., Poch, C., Gillmeister, H., Costantini, M., & Romei, V. (2019). Oscillatory properties of functional connections between sensory areas mediate cross-modal illusory perception. Journal of Neuroscience, 39(29), 5711–5718.

    PubMed  Google Scholar 

  • Di Gregorio, F., Trajkovic, J., Roperti, C., Marcantoni, E., Di Luzio, P., Avenanti, A., … Romei, V. (2022). Tuning alpha rhythms to shape conscious visual perception. Current Biology, 32(5), 988–998.

  • De Graaf, T. A., & Duecker, F. (2022). No effects of rhythmic visual stimulation on target discrimination: An online alpha entrainment experiment. European Journal of Neuroscience, 55(11/12), 3340–3351.

    PubMed  Google Scholar 

  • De Graaf, T. A., Gross, J., Paterson, G., Rusch, T., Sack, A. T., & Thut, G. (2013). Alpha-band rhythms in visual task performance: Phase-locking by rhythmic sensory stimulation. PLOS ONE, 8(3), Article e60035.

    PubMed  Google Scholar 

  • Fenner, B., Cooper, N., Romei, V., & Hughes, G. (2020). Individual differences in sensory integration predict differences in time perception and individual levels of schizotypy. Consciousness and Cognition, 84, Article 102979.

    PubMed  Google Scholar 

  • Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23(24), 2553–2558.

    PubMed  Google Scholar 

  • Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278–285.

    PubMed  Google Scholar 

  • Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–165.

    Google Scholar 

  • Hanslmayr, S., Axmacher, N., & Inman, C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends in Neurosciences, 42(7), 485–499.

    PubMed  Google Scholar 

  • Hillock-Dunn, A., & Wallace, M. T. (2012). Developmental changes in the multisensory temporal binding window persist into adolescence. Developmental Science, 15(5), 688–696.

    PubMed  PubMed Central  Google Scholar 

  • Hillock-Dunn, A., Grantham, D. W., & Wallace, M. T. (2016). The temporal binding window for audiovisual speech: Children are like little adults. Neuropsychologia, 88, 74–82.

    PubMed  Google Scholar 

  • Huang, W. A., Stitt, I. M., Negahbani, E., Passey, D. J., Ahn, S., Davey, M., … Fröhlich, F. (2021). Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nature Communications, 12(1), Article 3151.

  • Kawashima, T., Shibusawa, S., & Amano, K. (2022). Frequency-and phase-dependent effects of auditory entrainment on attentional blink. European Journal of Neuroscience, 56(4), 4411–4424.

    PubMed  Google Scholar 

  • Keil, J., & Senkowski, D. (2018). Neural oscillations orchestrate multisensory processing. The Neuroscientist, 24(6), 609–626.

    PubMed  Google Scholar 

  • Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64(3), 419–430.

    PubMed  PubMed Central  Google Scholar 

  • Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890–R905.

    PubMed  Google Scholar 

  • Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22(11), 1000–1004.

    PubMed  Google Scholar 

  • Marsicano, G., Cerpelloni, F., Melcher, D., & Ronconi, L. (2022). Lower multisensory temporal acuity in individuals with high schizotypal traits: A web-based study. Scientific Reports, 12(1), 1–12.

    Google Scholar 

  • Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior Research Methods, 44(1), 1–23.

    PubMed  Google Scholar 

  • McGovern, D. P., Burns, S., Hirst, R. J., & Newell, F. N. (2022). Perceptual training narrows the temporal binding window of audiovisual integration in both younger and older adults. Neuropsychologia, 173, Article 108309. https://doi.org/10.1016/j.neuropsychologia.2022.108309

    Article  PubMed  Google Scholar 

  • Migliorati, D., Zappasodi, F., Perrucci, M. G., Donno, B., Northoff, G., Romei, V., & Costantini, M. (2020). Individual alpha frequency predicts perceived visuotactile simultaneity. Journal of Cognitive Neuroscience, 32(1), 1–11.

    PubMed  Google Scholar 

  • Murray, M. M., Lewkowicz, D. J., Amedi, A., & Wallace, M. T. (2016). Multisensory processes: A balancing act across the lifespan. Trends in Neurosciences, 39(8), 567–579.

    PubMed  PubMed Central  Google Scholar 

  • Newman, A., Bavik, Y. L., Mount, M., & Shao, B. (2021). Data collection via online platforms: Challenges and recommendations for future research. Applied Psychology, 70(3), 1380–1402.

    Google Scholar 

  • Noel, J. P., Łukowska, M., Wallace, M., & Serino, A. (2016). Multisensory simultaneity judgment and proximity to the body. Journal of Vision, 16(3), 21–21.

    PubMed  PubMed Central  Google Scholar 

  • Noel, J. P., De Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10(1), 121–129.

    PubMed  Google Scholar 

  • Notbohm, A., Kurths, J., & Herrmann, C. S. (2016). Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Frontiers in Human Neuroscience, 10, 10.

    PubMed  PubMed Central  Google Scholar 

  • Pasqualotto, A., Dumitru, M. L., & Myachykov, A. (2016). Multisensory integration: Brain, body, and world. Frontiers in Psychology, 6, Article 2046.

    PubMed  Google Scholar 

  • Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1/2), 8–13.

    PubMed  PubMed Central  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J., & Strogatz, S. (2003). Books-synchronization: A universal concept in nonlinear sciences. Physics Today, 56(1), 47.

    Google Scholar 

  • Powers, A. R., Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29(39), 12265–12274.

    PubMed  Google Scholar 

  • Recanzone, G. H. (2009). Interactions of auditory and visual stimuli in space and time. Hearing Research, 258(1/2), 89–99.

    PubMed  PubMed Central  Google Scholar 

  • Regan, D. (1982). Comparison of transient and steady-state methods. Annals of the New York Academy of Sciences, 388, 45–71. https://doi.org/10.1111/j.1749-6632.1982.tb50784.x

    Article  PubMed  Google Scholar 

  • Reips, U. D. (2002). Standards for Internet-based experimenting. Experimental Psychology, 49(4), 243.

    PubMed  Google Scholar 

  • Roach, N. W., Heron, J., Whitaker, D., & McGraw, P. V. (2011). Asynchrony adaptation reveals neural population code for audio-visual timing. Proceedings of the Royal Society B: Biological Sciences, 278(1710), 1314–1322.

    Google Scholar 

  • Romei, V., Gross, J., & Thut, G. (2012). Sounds reset rhythms of visual cortex and corresponding human visual perception. Current Biology, 22(9), 807–813.

    PubMed  PubMed Central  Google Scholar 

  • Ronconi, L., & Melcher, D. (2017). The role of oscillatory phase in determining the temporal organization of perception: Evidence from sensory entrainment. Journal of Neuroscience, 37(44), 10636–10644.

    PubMed  Google Scholar 

  • Ronconi, L., Pincham, H. L., Cristoforetti, G., Facoetti, A., & Szűcs, D. (2016a). Shaping prestimulus neural activity with auditory rhythmic stimulation improves the temporal allocation of attention. NeuroReport, 27(7), 487.

    PubMed  PubMed Central  Google Scholar 

  • Ronconi, L., Pincham, H. L., Szűcs, D., & Facoetti, A. (2016b). Inducing attention not to blink: Auditory entrainment improves conscious visual processing. Psychological Research, 80, 774–784.

    PubMed  Google Scholar 

  • Ronconi, L., Busch, N. A., & Melcher, D. (2018). Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. Scientific Reports, 8(1), 1–10.

    Google Scholar 

  • Ronconi, L., Vitale, A., Federici, A., Mazzoni, N., Battaglini, L., Molteni, M., & Casartelli, L. (2023). Neural dynamics driving audio-visual integration in autism. Cerebral Cortex, 33(3), 543–556.

    PubMed  Google Scholar 

  • Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985–2990.

    PubMed  Google Scholar 

  • Sauter, M., Draschkow, D., & Mack, W. (2020). Building, hosting and recruiting: A brief introduction to running behavioral experiments online. Brain Sciences, 10(4), 251.

    PubMed  PubMed Central  Google Scholar 

  • Scally, B., Burke, M. R., Bunce, D., & Delvenne, J. F. (2018). Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiology of Aging, 71, 149–155.

    PubMed  Google Scholar 

  • Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding through neural coherence: Implications for multisensory processing. Trends in Neurosciences, 31(8), 401–409.

    PubMed  Google Scholar 

  • Simon, D. M., Noel, J. P., & Wallace, M. T. (2017). Event related potentials index rapid recalibration to audiovisual temporal asynchrony. Frontiers in Integrative Neuroscience, 11, 8.

    PubMed  PubMed Central  Google Scholar 

  • Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 3536–3544.

    PubMed  Google Scholar 

  • Spence, C. (2007). Audiovisual multisensory integration. Acoustical Science and Technology, 28(2), 61–70.

    Google Scholar 

  • Stecker, G. C. (2018). Temporal binding of auditory spatial information across dynamic binaural events. Attention, Perception, & Psychophysics, 80(1), 14–20.

    Google Scholar 

  • Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–266.

    PubMed  Google Scholar 

  • Stevenson, R. A., & Wallace, M. T. (2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227(2), 249–261.

    PubMed  PubMed Central  Google Scholar 

  • Stevenson, R. A., Fister, J. K., Barnett, Z. P., Nidiffer, A. R., & Wallace, M. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219(1), 121–137.

    PubMed  PubMed Central  Google Scholar 

  • Stevenson, R. A., Wilson, M. M., Powers, A. R., & Wallace, M. T. (2013). The effects of visual training on multisensory temporal processing. Experimental Brain Research, 225(4), 479–489.

    PubMed  PubMed Central  Google Scholar 

  • Stevenson, R. A., Park, S., Cochran, C., McIntosh, L. G., Noel, J. P., Barense, M. D., … Wallace, M. T. (2017). The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophrenia Research, 179, 97–103.

  • Surwillo, W. W. (1961). Frequency of the ‘alpha’ rhythm, reaction time and age. Nature, 191, 823–824.

    Google Scholar 

  • Thorne, J. D., & Debener, S. (2014). Look now and hear what’s coming: On the functional role of cross-modal phase reset. Hearing Research, 307, 144–152.

    PubMed  Google Scholar 

  • Thut, G., Schyns, P. G., & Gross, J. (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2, 170.

    PubMed  PubMed Central  Google Scholar 

  • Van der Burg, E., Alais, D., & Cass, J. (2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33(37), 14633–14637.

    PubMed  Google Scholar 

  • van Wassenhove, V. (2013). Speech through ears and eyes: Interfacing the senses with the supramodal brain. Frontiers in Psychology, 4, 388.

    PubMed  PubMed Central  Google Scholar 

  • Vatakis, A., Navarra, J., Soto-Faraco, S., & Spence, C. (2008). Audiovisual temporal adaptation of speech: Temporal order versus simultaneity judgments. Experimental Brain Research, 185(3), 521–529.

    PubMed  Google Scholar 

  • Venskus, A., & Hughes, G. (2021). Individual differences in alpha frequency are associated with the time window of multisensory integration, but not time perception. Neuropsychologia, 159, 107919.

  • Venskus, A., Ferri, F., Migliorati, D., Spadone, S., Costantini, M., & Hughes, G. (2021). Temporal binding window and sense of agency are related processes modifiable via occipital tACS. PLOS ONE, 16(9), Article e0256987.

    PubMed  Google Scholar 

  • Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72(4), 871–884.

    Google Scholar 

  • Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105–123.

    PubMed  PubMed Central  Google Scholar 

  • Zampini, M., Guest, S., Shore, D. I., & Spence, C. (2005). Audio-visual simultaneity judgments. Perception & Psychophysics, 67(3), 531–544.

    Google Scholar 

  • Zerr, M., Freihorst, C., Schütz, H., Sinke, C., Müller, A., Bleich, S., … Szycik, G. R. (2019). Brief sensory training narrows the temporal binding window and enhances long-term multimodal speech perception. Frontiers in Psychology, 10, Article 2489.

  • Zhou, H. Y., Cai, X. L., Weigl, M., Bang, P., Cheung, E. F., & Chan, R. C. (2018). Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 86, 66–76.

    Google Scholar 

Download references

Acknowledgments and funding information

G.M. and C.B. were supported by Ministero dell’Istruzione, dell’Università e della Ricerca, PRIN 2017 (2017TBA4KS_003).

The data and materials for this study are available upon request to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Ronconi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open practices statement

The data and materials for this study are available upon request to the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsicano, G., Bertini, C. & Ronconi, L. Alpha-band sensory entrainment improves audiovisual temporal acuity. Psychon Bull Rev 31, 874–885 (2024). https://doi.org/10.3758/s13423-023-02388-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-023-02388-x

Keywords

Navigation