Skip to main content
Log in

Drawing improves memory in patients with hippocampal damage

  • Published:
Memory & Cognition Aims and scope Submit manuscript

Abstract

The hippocampus plays a critical role in the formation of declarative memories, and hippocampal damage leads to significant impairments in new memory formation. Drawing can serve as a form of multi-modal encoding that improves declarative memory performance relative to other multimodal encoding strategies such as writing. We examined whether, and to what extent, patients with hippocampal damage could benefit from the mnemonic strategy of drawing. Three patients with focal hippocampal damage, and one patient with both hippocampal and cortical lesions, in addition to 22 age-, sex-, and education-matched controls, were shown a list of words one at a time during encoding and instructed to either draw a picture or repeatedly write each word for 40 s. Following a brief filled delay, free recall and recognition memory for words from both encoding trial types were assessed. Controls showed enhanced recall and recognition memory for words drawn versus those that were written, an effect that was even more pronounced in patients with focal hippocampal damage. By contrast, the patient with both hippocampal and cortical lesions showed no drawing-mediated boost in either recall or recognition memory. These findings demonstrate that drawing is an effective encoding strategy, likely accruing from the engagement of extra-hippocampal processes including the integration of cortical-based motor, visual, and semantic processing, enabling more elaborative encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the authors upon request

References

  • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 22(3), 425–444.

    Article  PubMed  Google Scholar 

  • Aggleton, J. P., Vann, S. D., Denby, C., Dix, S., Mayes, A. R., Roberts, N., & Yonelinas, A. P. (2005). Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia, 43(12), 1810–1823.

    Article  PubMed  Google Scholar 

  • Ally, B. A. (2012). Using pictures and words to understand recognition memory deterioration in amnestic mild cognitive impairment and Alzheimer's disease: A review. Current Neurology and Neuroscience Reports, 12(6), 687–694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ally, B. A., Gold, C. A., & Budson, A. E. (2009). The picture superiority effect in patients with Alzheimer's disease and mild cognitive impairment. Neuropsychologia, 47(2), 595–598.

    Article  PubMed  Google Scholar 

  • Amlien, I. K., Sneve, M. H., Vidal-Piñeiro, D., Walhovd, K. B., & Fjell, A. M. (2019). Elaboration benefits source memory encoding through centrality change. Scientific Reports, 9(1), 1–13.

    Article  Google Scholar 

  • Antony, J. W., Ferreira, C. S., Norman, K. A., & Wimber, M. (2017). Retrieval as a fast route to memory consolidation. Trends in Cognitive Sciences, 21(8), 573–576.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arndt, S., Cizadlo, T., O'Leary, D., Gold, S., & Andreasen, N. C. (1996). Normalizing counts and cerebral blood flow intensity in functional imaging studies of the human brain. Neuroimage, 3(3), 175–184.

    Article  PubMed  Google Scholar 

  • Baker, S., Vieweg, P., Gao, F., Gilboa, A., Wolbers, T., Black, S. E., & Rosenbaum, R. S. (2016). The human dentate gyrus plays a necessary role in discriminating new memories. Current Biology, 26(19), 2629–2634.

    Article  PubMed  Google Scholar 

  • Barbeau, E. J., Felician, O., Joubert, S., Sontheimer, A., Ceccaldi, M., & Poncet, M. (2005). Preserved visual recognition memory in an amnesic patient with hippocampal lesions. Hippocampus, 15(5), 587–596.

    Article  PubMed  Google Scholar 

  • Carr, V. A., Castel, A. D., & Knowlton, B. J. (2015). Age-related differences in memory after attending to distinctiveness or similarity during learning. Aging, Neuropsychology, and Cognition, 22(2), 155–169.

    Article  Google Scholar 

  • Clark, I. A., & Maguire, E. A. (2016). Remembering preservation in hippocampal amnesia. Annual Review of Psychology, 67, 51–82.

    Article  PubMed  Google Scholar 

  • Cohen, N. J., & Eichenbaum, H. (1995). Memory, amnesia, and the hippocampal system. MIT Press.

    Google Scholar 

  • Cohen, N. J., Ryan, J., Hunt, C., Romine, L., Wszalek, T., & Nash, C. (1999). Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus, 9(1), 83–98.

    Article  PubMed  Google Scholar 

  • Craik, F. I. (2002). Levels of processing: Past, present... And future? Memory, 10(5-6), 305–318.

    Article  PubMed  Google Scholar 

  • Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684.

    Article  Google Scholar 

  • Craik, F. I., & Rose, N. S. (2012). Memory encoding and aging: A neurocognitive perspective. Neuroscience & Biobehavioral Reviews, 36(7), 1729–1739.

    Article  Google Scholar 

  • Crawford, J. R., & Garthwaite, P. H. (2002). Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Neuropsychologia., 40, 1196–1208.

    Article  PubMed  Google Scholar 

  • Crawford, J. R., & Garthwaite, P. H. (2007). Comparison of a single case to a control or normative sample in neuropsychology: Development of a Bayesian approach. Cognitive Neuropsychology, 24(4), 343–372.

    Article  PubMed  Google Scholar 

  • Crawford, J. R., Garthwaite, P. H., & Porter, S. (2010). Point and interval estimates of effect sizes for the case-controls design in neuropsychology: Rationale, methods, implementations, and proposed reporting standards. Cognitive Neuropsychology, 27, 245–260.

    Article  PubMed  Google Scholar 

  • Crawford, J. R., & Howell, D. C. (1998). Comparing an individual's test score against norms derived from small samples. The Clinical Neuropsychologist, 12, 482–486.

    Article  Google Scholar 

  • Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109–120.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelkamp, J., & Zimmer, H. D. (1989). Memory for action events: A new field of research. Psychological Research Psychologische Forschung.

  • Engelkamp, J., & Zimmer, H. D. (1997). Sensory factors in memory for subject-performed tasks. Acta Psychologica, 96(1-2), 43–60.

    Article  Google Scholar 

  • Fan, J. E., Wammes, J. D., Gunn, J. B., Yamins, D. L., Norman, K. A., & Turk-Browne, N. B. (2020). Relating visual production and recognition of objects in human visual cortex. Journal of Neuroscience, 40(8), 1710–1721.

    Article  PubMed  Google Scholar 

  • Favila, S. E., Chanales, A. J., & Kuhl, B. A. (2016). Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nature Communications, 7(1), 1–10.

    Article  Google Scholar 

  • Fernandes, M. A., Wammes, J. D., & Meade, M. E. (2018). The surprisingly powerful influence of drawing on memory. Current Directions in Psychological Science, 27(5), 302–308.

    Article  Google Scholar 

  • Gardiner, J. M. (2001). Episodic memory and autonoetic consciousness: A first–person approach. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1413), 1351–1361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618–631.

    Article  PubMed  Google Scholar 

  • Gilboa, A., & Moscovitch, M. (2021). No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron, 109(14), 2239–2255.

    Article  PubMed  Google Scholar 

  • Gómez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., & Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. Journal of Neuroscience, 16(14), 4491–4500.

    Article  PubMed  Google Scholar 

  • Guttentag, R. E., & Hunt, R. R. (1988). Adult age differences in memory for imagined and performed actions. Journal of Gerontology, 43(4), P107–P108.

    Article  PubMed  Google Scholar 

  • Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d′. Behavior Research Methods, Instruments, & Computers, 27(1), 46–51.

    Article  Google Scholar 

  • Hebscher, M., Wing, E., Ryan, J., & Gilboa, A. (2019). Rapid cortical plasticity supports long-term memory formation. Trends in Cognitive Sciences, 23(12), 989–1002.

    Article  PubMed  Google Scholar 

  • Hilverman, C., Cook, S. W., & Duff, M. C. (2018). Hand gestures support word learning in patients with hippocampal amnesia. Hippocampus, 28(6), 406–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iani, F., & Bucciarelli, M. (2017). Mechanisms underlying the beneficial effect of a speaker’s gestures on the listener. Journal of Memory and Language, 96, 110–121.

    Article  Google Scholar 

  • Koolschijn, R. S., Emir, U. E., Pantelides, A. C., Nili, H., Behrens, T. E., & Barron, H. C. (2019). The hippocampus and neocortical inhibitory engrams protect against memory interference. Neuron, 101(3), 528–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockhart, R. S., & Craik, F. I. (1990). Levels of processing: A retrospective commentary on a framework for memory research. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 44(1), 87.

    Article  Google Scholar 

  • MacLeod, C. M., Gopie, N., Hourihan, K. L., Neary, K. R., & Ozubko, J. D. (2010). The production effect: Delineation of a phenomenon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 671.

    PubMed  Google Scholar 

  • Marlatte, H., Belchev, Z., Fraser, M., & Gilboa, A. (2023). The effect of hippocampal subfield damage on rapid temporal integration through statistical learning and associative inference. Neuropsychologia, 108755.

  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M., & Roberts, N. (2002). Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus, 12(3), 325–340.

    Article  PubMed  Google Scholar 

  • McGhee, J. D., Cowan, N., Beschin, N., Mosconi, C., & Della Sala, S. (2020). Wakeful rest benefits before and after encoding in anterograde amnesia. Neuropsychology, 34(5), 524.

    Article  PubMed  Google Scholar 

  • Meade, M. E., Ahmad, M., & Fernandes, M. A. (2020). Drawing pictures at encoding enhances memory in healthy older adults and in individuals with probable dementia. Aging, Neuropsychology, and Cognition, 27(6), 880–901.

    Article  Google Scholar 

  • Meade, M. E., Wammes, J. D., & Fernandes, M. A. (2019). Comparing the influence of doodling, drawing, and writing at encoding on memory. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 73(1), 28.

    Article  PubMed  Google Scholar 

  • Meade, M. E., Wammes, J. D., & Fernandes, M. A. (2018). Drawing as an encoding tool: Memorial benefits in younger and older adults. Experimental Aging Research, 44(5), 369–396.

    Article  PubMed  Google Scholar 

  • Mitchnick, K. A., Ahmad, Z., Mitchnick, S. D., Ryan, J. D., Rosenbaum, R. S., & Freud, E. (2022). Damage to the human dentate gyrus impairs the perceptual discrimination of complex, novel objects. Neuropsychologia, 172, 108238.

    Article  PubMed  Google Scholar 

  • Merhav, M., Karni, A., & Gilboa, A. (2014). Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus, 24(12), 1653–1662.

    Article  PubMed  Google Scholar 

  • Moscovitch, M., & Gilboa, A. (2021, May 10). Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors. https://doi.org/10.31234/osf.io/yxbrs

  • Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1–17.

    Article  Google Scholar 

  • Norman, K. A., & O'Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611.

    Article  PubMed  Google Scholar 

  • O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions to memory: Advances in the complementary learning systems framework. Trends in Cognitive Sciences, 6(12), 505–510.

    Article  PubMed  Google Scholar 

  • Paivio, A. (1971). Imagery and language. In Imagery (pp. 7–32). Academic Press.

    Chapter  Google Scholar 

  • Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 45(3), 255.

    Article  Google Scholar 

  • Paivio, A., Rogers, T. B., & Smythe, P. C. (1968). Why are pictures easier to recall than words? Psychonomic Science, 11(4), 137–138.

    Article  Google Scholar 

  • Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987.

    Article  PubMed  Google Scholar 

  • Pierce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203.

    Article  Google Scholar 

  • Pöhlchen, D., & Schönauer, M. (2020). Sleep-dependent memory consolidation in the light of rapid neocortical plasticity. Current Opinion in Behavioral Sciences, 33, 118–125.

    Article  Google Scholar 

  • Prinz, W. (1990). A common coding approach to perception and action. In Relationships between perception and action (pp. 167–201). Springer.

    Chapter  Google Scholar 

  • Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience, 7, 74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48.

    Article  PubMed  Google Scholar 

  • Rosenbaum, R. S., Moscovitch, M., Foster, J. K., Schnyer, D. M., Gao, F., Kovacevic, N., & Levine, B. (2008). Patterns of autobiographical memory loss in medial-temporal lobe amnesic patients. Journal of Cognitive Neuroscience, 20(8), 1490–1506.

    Article  PubMed  Google Scholar 

  • Rosenbaum, R. S., Murphy, K. J., & Rich, J. B. (2012). The amnesias. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 47–63.

    PubMed  Google Scholar 

  • Ryan, J. D., Moses, S. N., Barense, M., & Rosenbaum, R. S. (2013). Intact learning of new relations in amnesia as achieved through unitization. Journal of Neuroscience, 33(23), 9601–9613.

    Article  PubMed  Google Scholar 

  • Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal of Experimental Psychology: Human Learning and Memory, 4(6), 592.

    Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195.

    Article  PubMed  Google Scholar 

  • Stamenova, V., Nicola, R., Aharon-Peretz, J., Goldsher, D., Kapeliovich, M., & Gilboa, A. (2018). Long-term effects of brief hypoxia due to cardiac arrest: Hippocampal reductions and memory deficits. Resuscitation, 126, 65–71.

    Article  PubMed  Google Scholar 

  • Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93(24), 13515–13522.

    Article  Google Scholar 

  • Tran, S. H., Beech, I., & Fernandes, M. A. (2022). Drawing compared to writing in a diary enhances recall of autobiographical memories. Aging, Neuropsychology, and Cognition, 1–17.

  • Tulving, E. (1983). Elements of episodic memory.

    Google Scholar 

  • Vann, S. D., Tsivilis, D., Denby, C. E., Quamme, J. R., Yonelinas, A. P., Aggleton, J. P., & Mayes, A. R. (2009). Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proceedings of the National Academy of Sciences, 106(13), 5442–5447.

    Article  Google Scholar 

  • Waidergoren, S., Segalowicz, J., & Gilboa, A. (2012). Semantic memory recognition is supported by intrinsic recollection-like processes: “The butcher on the bus” revisited. Neuropsychologia, 50(14), 3573–3587.

    Article  PubMed  Google Scholar 

  • Wammes, J. D., Jonker, T. R., & Fernandes, M. A. (2019). Drawing improves memory: The importance of multimodal encoding context. Cognition, 191, 103955.

    Article  PubMed  Google Scholar 

  • Wammes, J. D., Meade, M. E., & Fernandes, M. A. (2016). The drawing effect: Evidence for reliable and robust memory benefits in free recall. Quarterly Journal of Experimental Psychology, 69(9), 1752–1776.

    Article  Google Scholar 

  • Wammes, J. D., Meade, M. E., & Fernandes, M. A. (2018). Creating a recollection-based memory through drawing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(5), 734.

    PubMed  Google Scholar 

  • Wing, E. A., Burles, F., Ryan, J. S., & Gilboa, A. (2022). The structure of prior knowledge enhances memory in experts by reducing interference Proceedings of the National Academy for Sciences of the USA.

    Book  Google Scholar 

  • Wilson, M. (1988). MRC psycholinguistic database: Machine-usable dictionary, version 2.00. Behavior Research Methods, Instruments, & Computers, 20(1), 6–10.

    Article  Google Scholar 

  • Yassa, M. A., & Stark, C. E. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yonelinas, A. P., Kroll, N. E., Dobbins, I., Lazzara, M., & Knight, R. T. (1998). Recollection and familiarity deficits in amnesia: Convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology, 12(3), 323.

    Article  PubMed  Google Scholar 

  • Zaiser, A. K., Bader, R., & Meyer, P. (2022a). High feature overlap reveals the importance of anterior and medial temporal lobe structures for learning by means of fast mapping. Cortex, 146, 74–88.

    Article  PubMed  Google Scholar 

  • Zaiser, A. K., Meyer, P., & Bader, R. (2022b). High feature overlap and incidental encoding drive rapid semantic integration in the fast mapping paradigm. Journal of Experimental Psychology: General, 151(1), 97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Patricia Aguiar for her assistance in data collection.

Funding

This study was funded by the Ontario Graduate Scholarship (OGS) to A.L., by Natural Sciences and Engineering Research Council of Canada discovery grant #378291 to A.G, and discovery grant #03917 to M.F., as well as by Canadian Institutes of Health Research (CIHR) grant #PJT175159 to A.G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Levi or A. Gilboa.

Ethics declarations

Conflicts of interest/Competing interests

No conflicts of interest were reported by the authors.

Ethics approval

Approval was obtained from the Research Ethics Board at the Rotman Research Institute at Baycrest Hospital. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All participants signed informed consent regarding publishing their data from this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Levi and A. Pugsley are co-first authors

Appendix

Appendix

Table 6 Words used in the Drawing and Writing conditions:

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levi, A., Pugsley, A., Fernandes, M.A. et al. Drawing improves memory in patients with hippocampal damage. Mem Cogn (2024). https://doi.org/10.3758/s13421-023-01505-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13421-023-01505-4

Keywords

Navigation