Skip to main content
Log in

Behavioral phenotyping of a murine model of Alzheimer’s disease in a seminaturalistic environment using RFID tracking

  • Measuring Behavior 2008
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Neurodegen erative disorders such as Alzheimer’s disease (AD) are increasingly threatening public health. Most animal models of AD consist of transgenic mice that are usually housed singly or in unisexual groups in small barren cages. Such restricted environments, however, prevent the mice from showing a variety of speciesspecific behaviors and consequently may constrain comprehensive behavioral phenotyping. On the other hand, allowing the animals to freely organize their lives in a spacious physically and socially enriched environment makes behavioral phenotyping laborious and time consuming. Radio frequency identification (RFID) using a network of antennae and small glass-coated transponders labeling each individual allows for gathering spatiotemporal information about a large number of individuals in parallel. The aim of this project was to use the RFID technique to facilitate the characterization of mice carrying a genetic disposition to develop AD-like pathology and of their wild-type conspecifics in a spacious seminaturalistic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albers, P. C. H., & de Vries, H. (2001). Elo-rating as a tool in the sequential estimation of dominance strengths. Animal Behaviour, 61, 489–495. doi:10.1006/anbe.2000.1571

    Article  Google Scholar 

  • Ambrée, O., Touma, C., Görtz, N., Keyvani, K., Paulus, W., Palme, R., & Sachser, N. (2006). Activity changes and marked stereotypic behavior precede Aβ pathology in TgCRND8 Alzheimer mice. Neurobiology of Aging, 27, 955–965. doi:10.1016/ j.neurobiolaging.2005.05.009

    Article  PubMed  Google Scholar 

  • Barnes, C. A. (1979). Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. Journal of Comparative & Physiological Psychology, 93, 74–104.

    Article  Google Scholar 

  • Chishti, M. A., Yang, D.-S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. Journal of Biological Chemistry, 276, 21562–21570. doi:10.1074/jbc.M100710200

    Article  PubMed  Google Scholar 

  • de Visser, L., van den Bos, R., Kuurman, W. W., Kas, M. J. H., & Spruijt, B. M. (2006). Novel approach to the behavioural characterization of inbred mice: Automated home cage observations. Genes, Brain, & Behavior, 5, 458–466. doi:10.1111/j.1601-183X.2005.00181.x

    Article  Google Scholar 

  • Dunn, S. M. (1998). Software review: Optimas 6.5. Journal of Computer-Assisted Microscopy, 10, 53–54.

    Article  Google Scholar 

  • Galsworthy, M. J., Amrein, I., Kuptsov, P. A., Poletaeva, I. I., Zinn, P., Rau, A., et al. (2005). A comparison of wild-caught wood mice and bank voles in the Intellicage: Assessing exploration, daily activity patterns and place learning paradigms. Behavioural Brain Research, 157, 211–217. doi:10.1016/j.bbr.2004.06.021

    Article  PubMed  Google Scholar 

  • Gerlach, G. (1996). Emigration mechanisms in feral house mice: A laboratory investigation of the influence of social structure, population density, and aggression. Behavioral Ecology & Sociobiology, 39, 159–170. doi:10.1007/s002650050277

    Article  Google Scholar 

  • Görtz, N., Lewejohann, L., Tomm, M., Ambrée, O., Keyvani, K., Paulus, W., & Sachser, N. (2008). Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behavioural Brain Research, 191, 43–48. doi:10.1016/ j.bbr.2008.03.006

    Article  PubMed  Google Scholar 

  • Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000). Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982. doi:10.1038/35050110

    Article  PubMed  Google Scholar 

  • Kritzler, M., Lewejohann, L., Krüger, A., Raubal, M., & Sachser, N. (2006). An RFID-based tracking system for laboratory mice in a semi-natural environment. Paper presented at the PERVASIVE 2006 Workshop—Pervasive Technology Applied Real-World Experiences With RFID and Sensor Networks, Dublin.

  • Lanari, A., Amenta, F., Silvestrelli, G., Tomassoni, D., & Parnetti, L. (2006). Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mechanisms of Ageing & Development, 127, 158–165. doi:10.1016/j.mad.2005.09.016

    Article  Google Scholar 

  • Lewejohann, L., Reefmann, N., Widmann, P., Ambrée, O., Herring, A., Keyvani, K., et al. (2009). Transgenic Alzheimer mice in a semi-naturalistic environment: More plaques, yet not compromised in daily life. Behavioural Brain Research, 201, 99–102. doi:10.1016/j.bbr.2009.01.037

    Article  PubMed  Google Scholar 

  • Lewejohann, L., Skryabin, B. V., Sachser, N., Prehn, C., Heiduschka, P., Thanos, S., et al. (2004). Role of a neuronal small non-messenger RNA: Behavioural alterations in BC1 RNA-deleted mice. Behavioural Brain Research, 154, 273–289. doi:10.1016/j.bbr.2004.02.015

    Article  PubMed  Google Scholar 

  • Lloyd, J. A. (1975). Social structure and reproduction in two freelygrowing populations of house mice (Mus musculus L.). Animal Behaviour, 23, 413–424. doi:10.1016/0003-3472(75)90089-5

    Article  Google Scholar 

  • Mackintosh, J. H. (1970). Territory formation by laboratory mice. Animal Behaviour, 18, 177–183.

    Article  Google Scholar 

  • Marshall, G. A., Fairbanks, L. A., Tekin, S., Vinters, H. V., & Cummings, J. L. (2006). Neuropathologic correlates of activities of daily living in Alzheimer disease. Alzheimer Disease & Associated Disorders, 20, 56–59. doi:10.1097/01.wad.0000201852.60330.16

    Article  Google Scholar 

  • Martin, P., & Bateson, P. (1993). Measuring behaviour: An introductory guide (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Nelson, A. R., Johnson, C. L., Matter, W. J., & Mannan, R. W. (2002). Tests of emigration in small mammals under experimental conditions. Canadian Journal of Zoology, 80, 2056–2060. doi:10.1139/z02-193

    Article  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing (Version 2.6.2). Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308, 648–652. doi:10.1126/science.1106477

    Article  PubMed  Google Scholar 

  • Sebastiani, G., Krzywkowski, P., Dudal, S., Yu, M., Paquette, J., Malo, D., et al. (2006). Mapping genetic modulators of amyloid plaque deposition in TgCRND8 transgenic mice. Human Molecular Genetics, 15, 2313–2323. doi:10.1093/hmg/ddl157

    Article  PubMed  Google Scholar 

  • Touma, C., Ambrée, O., Görtz, N., Keyvani, K., Lewejohann, L., Palme, R., et al. (2004). Age- and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 25, 893–904. doi:10.1016/ j.neurobiolaging.2003.09.004

    Article  PubMed  Google Scholar 

  • von Holst, D. (1998). The concept of stress and its relevance for animal behavior. In A. P. Møller, M. Milinski, & P. J. B. Slater (Eds.), Advances in the study of behavior 27: Stress and behavior (pp. 1–131). San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Lewejohann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewejohann, L., Hoppmann, A.M., Kegel, P. et al. Behavioral phenotyping of a murine model of Alzheimer’s disease in a seminaturalistic environment using RFID tracking. Behavior Research Methods 41, 850–856 (2009). https://doi.org/10.3758/BRM.41.3.850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.41.3.850

Keywords

Navigation