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Abstract: Matrix theory is very popular in different kind of sciences such as engineering, architecture, 
physics, chemistry, computer science, IT, so on as well as mathematics many theoretical results dealing 
with the structure of the matrices even this topic seems easy to work. That is why many scientists still 
consider some open problem in matrix theory.  

 In this paper, generalizations of the arithmetic-geometric mean inequality is presented for singular 
values related to block matrices. Singular values are also given for sums, products and direct sums of the 
matrices. 
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1. Introduction and Preliminaries   

In recent years, the Arithmetic-Geometric (A-G) mean 
inequality for singular values was introduced by 
Bhatia and Kittaneh [3]. On the other hand, Zhan [11] 
and Tao [9] have presented equivalent inequalities; 
also Hirzallah [7] described a lower bound of singular 
values of block matrices and authors in [4] proved an 
interesting singular value inequality. 

Additionally, improvements and generalizations of the 
A-G mean inequality for unitarily invariant norms 
were presented in [10]. Several inequalities for 
singular values related to block positive semidefinite 
matrices were proved by Burqan and Kittaneh [5]. 

 

 

 

 

For readers, the notions given in this paper can be 
found in almost every book ([2, 8, 11]). 

Definition 1.1. Let A be a complex matrix with 
degree n. If A is symmetric and ∀ u ∈ ₵n, utAu > 0 , 
then it is called a positive definite. It is called by 
positive semidefinite if  ∀ u ∈ ₵n, utAu ≥ 0 . 
If A and B are Hermitian complex matrices with 
degree n, we use the notation  A ≥ B to mean A − B is 
positive semidefinite. 
Definition 1.2. Let A be a complex matrix with 
degree n. The modulus of a matrix A is defined by 
|A| = √A∗A , where A∗ is a complex conjugate of 𝐴. 
As consequence of the Fundamental Theorem of 
Algebra for application to the characteristic 
polynomial, we obtain every n × n matrix has exactly 
n complex eigenvalues, counted with multiplicity. So, 
we can define followings: 
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Definition 1.3. Let A be a complex matrix with degree 
 n. The eigenvalues of the modulus of A are named by 
the singular values of A and denoted by 
s1(A), s2(A), … , sn(A). They are also arranged as 
s1(A) ≥ s2(A) ≥ ⋯ ≥ sn(A). 
 
There are some properties of the singular values and 
eigenvalues of A and we give some of them as 
follows: 
 

1. If A is a complex matrix with degree n, then 
sj(A) = sj(A∗) = sj(|A|),    j = 1, … , n. 

2. If A is Hermitian complex matrix with degree n, 
then the eigenvalues of A satisfy  

λ1(A) ≥ λ2(A) ≥ ⋯ ≥ λn(A). 
By the way, Weyl's monotonicity principle introduced 
motivating relations for eigenvalues of Hermitian 
matrices, which says that if A, B are Hermitian 
complex matrices with degree n and  A ≥ B, then 

λj(A) ≥ λj(B),     j = 1, … , n.      
Also, if A have singular values s1(A) ≥ s2(A) ≥ ⋯ ≥

sn(A) ≥ 0, and eigenvalues ordered so that  λ1(A) ≥

λ2(A) ≥ ⋯ ≥ λn(A), then  
|λ1(A)λ2(A) … λk(A)| ≤ s1(A)s2(A) … sk(A) 

for  k = 1, … , n with equality for k = n. 
 
Definition 1.4. A block diagonal matrix A is a square 
diagonal matrix where the diagonal elements are 
square matrices of any size and the off diagonal 
elements are zero. If we summarize this definition, we 
can say following item; assume that A, B are complex 
matrices with degree n, the direct sums of A and B is 

denoted by A⨁B and defined as [A 0
0 B

]. 

It is well known that 

sj(A) ≤ sj(B) if and only if sj(A⨁A) ≤ sj(B⨁B),  

j = 1, … ,2n. 

Moreover, if sj(A1) ≤ sj(B1) and sj(A2) ≤ sj(B2), 
then sj(A1⨁A2) ≤ sj(B1⨁B2),                 j = 1, … ,2n.   

In the last years, mathematicians worked on several 
special inequalities for eigenvalues and singular 
values of the complex matrices. 
Bhatia and Kittaneh [3] presented the A-G mean 
inequality for singular values as follows:  

If A, B are complex matrices with degree n, then 
2sj(AB∗) ≤ sj(A∗A + B∗B), j = 1, … , n.               (1.1)   

For positive semidefinite complex matrices A, B with 
degree n, Zhan [12], has proved  

sj(A − B) ≤ sj(A⨁B), j = 1, … , n.                      (1.2) 

Tao [9] proved that if A, B, C are complex matrices 

with degree n such that [ A B
B∗ C

] ≥ 0, then 

2sj(B) ≤ sj [
A B
B∗ C

] , j = 1, … , n                             (1.3) 

furthermore, he pointed out that the previous three 
inequalities are equivalent. 

Hirzallah [7] gave a lower bound for singular values 
of  2 × 2 block matrices as follows: 

If A, B, C, D are complex matrices with degree n, then 

2sj(AB∗ + CD∗) ≤ sj
2 [

A B
C D

] , j = 1, … , n.         (1.4) 

On other hand, Authors in [4] obtained that if A, B are 
complex matrices with degree n such that A is 
Hermitian, B ≥ 0 and ±A ≤ B, then  

sj(A) ≤ sj(B⨁B),                                                        (1.5) 

sj(AB∗ + BA∗) ≤ 

      sj((AA∗ + BB∗)⨁(AA∗ + BB∗))                      (1.6) 

Some equivalent inequalities of (1.1) were obtained 
by researchers such as [1] if A, B, C are complex 

matrices with degree n such that [ A B
B∗ C

] ≥ 0, then  

sj(B) ≤ sj(A⨁C), j = 1, … , n.                           (1.7) 

The following singular value inequality for sums and 
direct sums of matrices was given by Buraqan and 
Kittaneh [5], 
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If A, B, C, X, Y are complex matrices with degree n 

such that [ A B
B∗ C

] ≥ 0, then  

sj(X∗BY + Y∗B∗X) ≤ sj((X∗AX + Y∗CY)⨁(X∗AX +

Y∗CY)),        j = 1, … , n .                                            (1. 8) 

     In this research, Generalizations of the A-G mean 
inequality for singular values (1.1) are established. 
Also, other related inequalities to sums, direct sums 
and products of matrices are considered. 

 

2. Main Results: 
 
The following lemma is essential in our analysis, 
relates the singular values of a matrix 𝐾 with the 

eigenvalues of [ 0 K
K∗ 0

]. 

 

Lemma 2.1 [𝟐]: If K is a complex matrix with degree 

n and rank r, then the eigenvalues of [ 0 K
K∗ 0

] are 

s1(K), … , sr(K), 0, … ,0, −sr(K), … , −s1(K). 

 

Theorem 2.1: Let A, B, C, D, X, Y be complex matrices 
with degree n. Then  

2sj(XA∗BY∗⨁YC∗DX∗) ≤ 

 sj((AX∗XA∗ + BY∗YB∗)⨁(CY∗YC∗ + DX∗XD∗)), 

j = 1, … ,2n. 

Proof. Let W = [

AX∗ 0 BY∗ 0
0 CY∗ 0 DX∗

0 0 0 0
0 0 0 0

], 

Z = [

0 0 XA∗BY∗ 0
0 0 0 YC∗DX∗

YB∗AX∗ 0 0 0
0 XD∗CY∗ 0 0

]. 

Then 

WW∗ =   [

AX∗XA∗ + BY∗YB∗ 0 0 0
0 CY∗YC∗ + DX∗XD∗ 0 0
0 0 0 0
0 0 0 0

], 

W∗W = [

XA∗AX∗ 0 XA∗BY∗ 0
0 YC∗CY∗ 0 YC∗DX∗

YB∗AX∗ 0 YB∗BY∗ 0
0 XD∗CY∗ 0 XD∗DX∗

] 

and 

W∗W − 2Z              

= [

XA∗AX∗ 0 −XA∗BY∗ 0
0 YC∗CY∗ 0 −YC∗DX∗

−YB∗AX∗ 0 YB∗BY∗ 0
0 −XD∗CY∗ 0 XD∗DX∗

]

= [

AX∗ 0 −BY∗ 0
0 CY∗ 0 −DX∗

0 0 0 0
0 0 0 0

]

∗

[

AX∗ 0 −BY∗ 0
0 CY∗ 0 −DX∗

0 0 0 0
0 0 0 0

]

≥ 0. 

Weyl's monotonicity principle yields 

 2λj(Z) ≤ λj(W∗W),         j = 1, … ,2n. 

The eigenvalues of W∗W and WW∗ are 

  sj((AX∗XA∗ + BY∗YB∗)⨁(CY∗YC∗ + DX∗XD∗)),    

 j = 1, … ,2n. 

By Lemma 2.1, the 2n eigenvalues of Z are   

sj(XA∗BY∗⨁YC∗DX∗),   j = 1, … ,2n. 

Therefore,  

2sj(XA∗BY∗⨁YC∗DX∗) ≤ 

 sj((AX∗XA∗ + BY∗YB∗)⨁(CY∗YC∗ + DX∗XD∗)), 

  j = 1, … ,2n.■ 

Let C = D = 0, X = Y = I in Theorem 2.1, we get 
inequality (1.1). 

     Another version of A-G mean inequality for block 
matrices is established in the following result.  

Theorem 2.2: Let A, B, C, D, X, Y be complex matrices 
with degree n. Then  

sj(XA∗BY∗⨁YC∗DX∗)

≤ sj(X|A|2X∗⨁Y|B|2Y∗⨁Y|C|2Y∗⨁X|D|2X∗),  

 j = 1, … ,2n. 

Proof. Let W = [

AX∗ 0 BY∗ 0
0 CY∗ 0 DX∗

0 0 0 0
0 0 0 0

] and 
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 Z = [

0 0 XA∗BY∗ 0
0 0 0 YC∗DX∗

YB∗AX∗ 0 0 0
0 XD∗CY∗ 0 0

].  

Then 

 W∗W = [

XA∗AX∗ 0 XA∗BY∗ 0
0 YC∗CY∗ 0 YC∗DX∗

YB∗AX∗ 0 YB∗BY∗ 0
0 XD∗CY∗ 0 XD∗DX∗

]

≥ 0                                                            

and  

 W∗W − 2Z

= [

XA∗AX∗ 0 −XA∗BY∗ 0
0 YC∗CY∗ 0 −YC∗DX∗

−YB∗AX∗ 0 YB∗BY∗ 0
0 −XD∗CY∗ 0 XD∗DX∗

]           

= [

AX∗ 0 −BY∗ 0
0 CY∗ 0 −DX∗

0 0 0 0
0 0 0 0

]

∗

[

AX∗ 0 −BY∗ 0
0 CY∗ 0 −DX∗

0 0 0 0
0 0 0 0

]       

≥ 0.                                                            

From the previous two inequalities, we get  

[

XA∗AX∗ 0 0 0
0 YC∗CY∗ 0 0
0 0 YB∗BY∗ 0
0 0 0 XD∗DX∗

]

≥ ± [

0 0 XA∗BY∗ 0
0 0 0 YC∗DX∗

YB∗AX∗ 0 0 0
0 XD∗CY∗ 0 0

]. 

By applying inequalities (1.5), we get  

sj((XA∗BY∗⨁YC∗DX∗)⨁(XA∗BY∗⨁YC∗DX∗)∗)

≤ sj (
(XA∗AX∗⨁YB∗BY∗⨁YC∗CY∗⨁XD∗DX∗)⨁
(XA∗AX∗⨁YB∗BY∗⨁YC∗CY∗⨁XD∗DX∗)

). 

Thus, 

sj(XA∗BY∗⨁YC∗DX∗) ≤

sj(XA∗AX∗⨁YB∗BY∗⨁YC∗CY∗⨁XD∗DX∗).■ 

     Several inequalities of singular values for direct 
sums and products of matrices are presented in the 
following theorems. 

Theorem 2.3:  Let A, B, C, X, Y be complex matrices 

with degree n such that [ 
A B
B∗ C

] ≥ 0.  Then  

 sj(XBY∗) ≤ sj(XAX∗⨁YCY∗), j = 1 … , n.    (2.1)  

Proof: Consider T = [
X 0
0 Y

] and D= [
X 0
0 −Y

]. Then 

T [
A B
B∗ C

] T∗ = [
XAX∗ XBY∗

YB∗X∗ YCY∗] ≥ 0 

and 

D [
A B
B∗ C

] D∗ = [
XAX∗ −XBY∗

−YB∗X∗ YCY∗ ] ≥ 0 . 

Thus, 

[
XAX∗ 0

0 YCY∗] ≥ ± [
0 −XBY∗

−YB∗X∗ 0
]. 

By applying inequality (1.5), we get 

sj(XBY∗⨁ YB∗X∗)

≤ sj((XAX∗⨁ YCY∗)⨁(XAX∗⨁ YCY∗)) 

This is equivalent to saying that  

sj(XBY∗) ≤ sj(XAX∗⨁YCY∗).■  

Let X = Y = I in inequality (2.1), we get inequality 
(1.7). 

Since [AA∗ + CC∗ AB∗ + CD∗

BA∗ + DC∗ BB∗ + DD∗] ≥ 0 for any complex 

matrices A, B, C, D, we have the following theorem. 

Theorem 2.4: Let A, B, C, D be complex matrices with 
degree n. Then  

sj(AB∗ + CD∗) ≤ 

sj((AA∗ + CC∗)⨁(BB∗ + DD∗)),       j = 1,2, … n. 

Let C = B and D = A, in Theorem 2.4, to get 
inequality (1.6), 

sj(AB∗ + BA∗) ≤ sj((AA∗ + BB∗)⨁(AA∗ + BB∗)). 

Let C = D = 0, in Theorem 2.4, we get 

sj(AB∗) ≤ sj((AA∗)⨁(BB∗)). 

Note that for any matrix T =  [
A C
B D

], 

where A, B, C, D are complex matrices with degree n,  
we have  

sj(T) = sj(T∗) = λ
j

1

2(TT∗)

= λ
j

1

2 (
AA∗ + CC∗ AB∗ + CD∗

BA∗ + DC∗ BB∗ + DD∗) 
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                           = s
j

1

2 (
AA∗ + CC∗ AB∗ + CD∗

BA∗ + DC∗ BB∗ + DD∗). 

So by inequality (1.3), we get Hirzallah inequality 
(1.4), 

2sj(AB∗ + CD∗) ≤ sj
2 [

A B
C D

]. 

 

3. Conclusion 

In 1990, arithmetic geometric mean inequality was 
proven for a version of the matrix. Since then, 
some new demonstrations, developments and 
related issues have been worked actively. In this 
work, a generalization of the Arithmetic and 
Geometric mean inequality is found out and 
proved. Moreover, various related inequalities to 
sums and products of matrices are investigated. 
One may consider our useful results and apply to 
some open problems of the advancing subject of 
matrix inequalities. 
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