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1 Introduction
Many structures are alternating in design, to reflect
the specific structure of Metzlerian continuous-time
systems [6] or positive discrete-time linear systems
[3], [20], or in solving problem of diagonal stabili-
sation of the closed-loop system [13], [14]. Because
of the positivity constraints, the synthesis of positive
systems can be limited by using linear programming
[1] for some problems implying from parametric con-
strain effects. Defining parametric constraints by
means of linear matrix inequalities [9], [10] greatly
facilitates state control synthesis for positive systems.
Formulating for partly unconstrained cases to derive
the stability condition, H2 state-feedback synthesis
problem under structural positivity constraints may
stay non-convex [5]. To regularize it, a set of addi-
tive linear matrix inequalities (LMI) [4], [19] is com-
bined to the basic set of LMIs guaranteing the system
asymptotic stability. On the other hand, the advantage
of procedures based on H2 norm is the possibility to
combine into the synthesis conditions the boundaries
defined also by the system environment [7], [16]. The
common idea is to calculate the matrix gains of the
control law by solving the optimization on extended
set of LMIs.

The paper presents an approach in state control
synthesis for discrete-time positive systems within
mixed H2/H∞ norm formulation. Motivated by
the ideas presented in [10]-[12] design is covered
via extended set of LMIs with fixing of H2 norm
of closed-loop system transform matrix combined
with bounded real lemma LMI structure. LMI-
based approach, characterizing synthesis of con-

trollers is computationally simple, efficient, appli-
cable to square multiple input and multiple output
(MIMO) systems for strictly positive discrete-time
linear systems as well as for non-negative class of
these systems. Authors try to apply enhanced LMI
based ideas and to show that the above conjecture is
true for standard classes of positive discrete-time lin-
ear systems.

The outline of the paper is as follows. Section 2
characterises a way of accounting system paramet-
ric constraints into control design for the consid-
ered system class and, subsequently, Sections 3 - 5
present adaptations of H2 and H∞ norm principles to
formulate associate LMI-based design conditions for
discrete-time linear strictly positive systems. An en-
hanced approach, reflecting norm-based principles to
formulate control design conditions, is given in Sec-
tion 6, gradually focusing on differences in design
tasks formulation for strictly and non-strictly positive
systems. Section 7 gives numerical examples, illus-
trating obtained results and Sec. 8 presents some con-
clusions.

Throughout the paper, the notations are narrowly
standard in such way that xT , XT denotes the trans-
pose of the vector x and matrix X , respectively, for
a square matrix X ≺ 0 means that X is a symmetric
negative definite matrix, diag[ · ] enters up a diagonal
matrix, the symbol In indicates the n-th order unit
matrix,Rn

n (Rn
+) points to the set of all n-dimensional

real (non-negative as well as positive) vectors, Rn×n
n

(Rn×r
+ ) refers to the set of all n×r real (non-negative

as well as positive) matrices and R+ denotes the set
of positive real numbers.
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2 Control of Strictly Positive Systems
Considered systems class admits the description

q(i+ 1) = Fq(i) +Gu(i) (1)

y(i) = Cq(i) (2)

where q(i) ∈ Rn
+, u(t) ∈ Rr, y(t) ∈ Rm

+ are
state, input and output vectors, G ∈ Rn×r

+ , C ∈
Rn

+ are nonnegative matrices and F ∈ Mn×n
−+ is

strictly positive natrix (all its elements are greater
then zero). Such systems are noted as the strictly pos-
itive discrete-time systems [2]. A strictly positive ma-
trix structure of F implies n2 structural constraints

flh > 0 ∀ l, h = 1, . . . n (3)

which, in consequence mean that strictly positive sys-
tems (1), (2) are diagonally stabilizable [9]. To do
with diagonal constraints, the operations based on
permutation matrices are exploited.

Definition 1. [8] A square matrix L ∈ Rn×n is a
permutation matrix if exactly one entry in each row
and column is equal to 1 and all other entries are 0.

Remark 1. Defining L ∈ Rn×n in the circulant form

L =

[
0T 1
In−1 0

]
(4)

and a square diagonal matrix Y of dimension n×n

Y = diag [ y1 y2 · · · yn ] (5)

then

LTY L = diag [ y2 · · · yn y1 ] (6)

To substitute (3) as a set of n linear matrix inequal-
ities, the following lemma determines solutions.

Lemma 1. (adapted from [9]) Let system (1), (2)
is strictly positive then it is asymptotically stable if
and only if there exists a positive definite diagonal
matrix P ∈ Rn×n

+ such that for j = 1, . . . , n,
h = 0, 1, . . . n − 1, L ∈ Rn×n

+ , (∆) = (1 ↔ n)/n,
the following set of LMIs is feasible for

F (j, j+h)(∆)= diag [a1,1+h · · · an−j,n · · · anh] (7)

P � 0 (8)

LhF (j, j + h)(∆)L
hTP � 0 (9)

FTPF − P ≺ 0 (10)

Note, the set of LMIs (9) reflects the structural
constraints (3) and the Lyapunov matrix inequality
(10) guaranties that F is Schur.

Considering state feedback with a strictly positive
matrix K ∈ Rr×n

+ and strictly positive F ∈ Rn×n
+

u(i) = −Kq(i) (11)

K =

 kT
1
...

kT
r

 , G = [ g1 · · · gr ] (12)

then the closed-loop system description is

q(i+ 1) = (F −GK)q(i) = F cq(i) (13)

F c = F −GK = F −
r∑

k=1

gkk
T
k (14)

has to be also a strictly positive matrix. Then G ∈
Rn×r

+ , F c ∈ Rn×n
+ prescribe algebraic constraints

fclj = flj −
r∑

k=1

glkkkl > 0 ∀ l, j = 1, . . . , n (15)

while, in details,

F =

f11 · · · f1n...
fn1 · · · fnn

, gk =

g1k...
gnk

, kk =

kk1...
gkn


(16)

that is, the positiveness constraints for the solvability
of a strictly positive gain matrix K are given by set
of n2 scalar inequalities (15).

To explain the diagonal principle of positiveness
constraints definition by linear matrix inequalities,
the full structure of F c is considered as follows

F c =

f11 · · · f1n...
fn1 · · · fnn

− r∑
k=1

g1k...
gnk

 [kk1 · · · kkn] (17)

and the positiveness constraints on the diagonal ele-
ments of (17), if K ∈ Rr×n

+ is strictly positive, can be

F (j, j)(∆) −
r∑

k=1

GdkKdk � 0 (18)

F(j, j)(∆) = diag [f11 · · · fnn] � 0 (19)

Kdk = diag [kk1 · · · kkn] � 0 (20)

Gdk = diag [g1k · · · gnk] (21)

Multiplying the right side of (14) by L results in

F cL

=

f12 · · · f1n f11. . .
fn2 · · · fnnfn1

−
r∑

k=1

g1k...
gnk

 [kk2 · · · kknkk1]

(22)
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and it has to yield for diagonal elements of (22)

F (j, j + 1)(∆) −
r∑

k=1

GdkKdkc1 � 0 (23)

F(j, j + 1)(∆) = diag [f12f23 · · · fn1] � 0 (24)

Kdkc1 = diag [kk2 · · · kknkk1] � 0 (25)
and Kdkc1 denotes the diagonal matrix Kdk with one
circular shift of its diagonal elements.

Applying this procedure (n−1)-times with circu-
lar shift of diagonal elements of Kdk results in

Fc = F (j, j)(∆) −
r∑

k=1

GdkKdk+

+ F(j, j + 1)(∆)L
T −

r∑
k=1

GdkKdkc1L
T+

...
+ F(j, j + n− 1)(∆)L

(n−1)T−

−
r∑

k=1

GdkKdkc(n−1)L
(n−1)T

(26)

for all

F (j, j + h)(∆) −
r∑

k=1

GdkKdkch � 0 (27)

F(j, j + h)(∆) = diag [f1,h+1f2,h+2 · · · fnh] (28)

Kdkch = diag [kk,1+h kk,2+h · · · kkh] � 0 (29)

while Kdkch represents a diagonal matrix structure
of Kdk with h circular shifts of its diagonal elements
and used index summation (∆) = (1 ↔ n)/n de-
notes generalized sum modulo n [9].

Set of LMIs (26) for h = 0, 1, . . . n − 1 defines
conditions to design strictly positive K guaranteing,
in general not Shur, strictly positive matrix F c. The
following lemma formulates this result.

Lemma 2. Using state feedback control law (11) in
control of (1), (2), then matrix F c is strictly positive
if for given strictly positive matrix F ∈ Rn×n

+ and
non-negative G ∈ Rn×r

+ there exist strictly positive
definite diagonal matrices P ,Rk ∈ Rn×n such that
for j = 1, . . . , n, h = 0, 1, . . . , n− 1, k = 1, . . . r

P � 0, Rk � 0 (30)

LhF (j, j + h)(∆)L
hTP −

r∑
k=1

LhGdkL
hTRk � 0

(31)
where design parameters are (19), (21) and (4).

If the above conditions are feasible

Kdk = RkP
−1,kT

k = lTKdk, l
T = [1 · · · 1] (32)

Proof. Using the permutation matrix (4) it yields for
h = 0, 1, 2, . . . n− 1 that

Kdk = LhKdkchL
hT (33)

Thus, multiplying the right side by LhTP , where P
is a positive definite diagonal matrix, then (33) im-
plies

F (j, j + h)(∆)L
hTP −

r∑
k=1

GdkKdkchL
hTP

= F (j, j + h)(∆)L
hTP −

r∑
k=1

GdkL
hTKdkP

� 0
(34)

and multiplying the left side of (34) by Lh to preserve
diagonal structure, then with the notation

Rk = KdkP (35)

(34) implies (31). This concludes the proof.

Remark 2. Formulation of the diagonal stabiliza-
tion principle can be simple illustrated by replacing
square form od (17) by the following rhombic nota-
tion
F c(∆) =
fc11 fc12 fc13 · · · fc1n

fc22 fc23 · · · fc2n fp21
fc33 · · · fc3n fc31 fc32

. . .
...

...
...

. . .
fcnn fcn1 fcn2 · · · fcn,n−1

 (36)

where fclj ∀ l, j = 1, . . . , n are given in (15).
It can see that positive elements of diagonal ma-

trix F c(j, j)(∆) are on the first diagonal of F c(∆),
positive elements of diagonal matrix F c(j, j + 1)(∆)
are on the second diagonal of F c(∆), etc. Thus, since
elements of F c(j, j + h)(∆) are on the (h + 1) di-
agonal of F c(∆), their positivity can be expressed by
diagonal matrix inequality (31).

In addition, the fundamental ordering if elements
of the associated rows in F c(∆) agree with (multiple)
circular shift of the reference rows of (17).

Note, the conditions given by Lemma 2 (if are
feasible for given system matrix parameters) result
in strictly positive K ∈ Rr×n

+ and strictly posi-
tive F c ∈ Rn×n

+ but do not guarantee that F c is
Schur. Therefore, these inequalities has to be sup-
plemented by another linear matrix inequality (even-
tually by a set of linear matrix inequalities) to ensure
that the asymptotic stability of the closed-loop system
is achieved (if it is possible) [10].

Such a solution is also used in the following, when
the stabilizing condition takes into account the Lya-
punov inequality.
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Theorem 1. Using state feedback control law (1) in
control of (1), (2), then matrix F c is strictly pos-
itive and Schur if for given strictly positive matrix
F ∈ Rn×n

+ and non-negative G ∈ Rn×r
+ there exist

positive definite diagonal matrices P ,Rk ∈ Rn×n

such that for j = 1, . . . , n, h = 0, 1, . . . , n − 1 and
k = 1, . . . r,

P � 0, Rk � 0 (37) −P ∗
FP −

m∑
k=1

Gdkll
TRdk −P

 ≺ 0 (38)

LhF (j, j + h)(∆)L
hTP −

r∑
k=1

LhGdkL
hTRk � 0

(39)
where matrix design parameters are given in (4), (7)
and (21).

If the above conditions are feasible it yields (32)
and the strictly positive K is constructed using (12).

Hereafter, ∗ is the symmetric item in a symmetric
matrix.

Proof. Considering a positive definite diagonal ma-
trix P ∈ Rn×n

+ and defining the Lyapunov function
candidate as

v(q(i)) = qT(i)Pq(i) > 0 (40)

then, substituting (3), it yields

∆v(q(i)) = qT(i)(FT
c PF c − P )q(i) < 0 (41)

which implies

FT
c PP−1PF c − P ≺ 0 (42)

and it in what follows, using the Schur complement
property, [

−P FT
c P

PF c −P

]
≺ 0 (43)

Since

F cP = FP −
m∑
k=1

gkk
T
kP

= FP −
m∑
k=1

Gdkll
TKdkP

(44)

where Kdk, Gdk are defined in (20), (21) and lT in
(32). Thus, with (35) then (43) implies (38). This
concludes the proof.

It can be in this way concluded, generalizing
the idea of the design condition structure to state-
feedback control design for strictly positive linear
systems means that the LMIs guaranteing closed-loop
system matrix parameter positivity stay unchanged
and only set of LMIs, guaranteing stability and trans-
fer function performances has to be redefined.

3 H∞ Control Synthesis
To demonstrate the applicability of H∞ norm prin-
ciple in control design for strictly positive discrete-
time linear systems, the following lemma is required
in proofs of the proposed theorem.
Lemma 3. [7] (Bounded real lemma (BRL)) If the
closed-loop discrete-time linear system is given as

q(i+ 1) = F cq(i) +Dd(i) (45)

y(i) = Cq(i) (46)
where D ∈ Rn×p, d ∈ Rp, w ∈ Rr, then F c is
Schur if there exist a symmetric positive definite ma-
trix P ∈ Rn×n and a positive scalar γ ∈ R+ such
that

P = PT � 0, γ > 0 (47)−P ∗ ∗ ∗
F cP −P ∗ ∗
CP 0 −γIm ∗
0 DT 0 −γIp

 ≺ 0 (48)

If a strictly positive discrete-time linear systems
is characterised by (45), (46) but with nonnegative
G ∈ Rn×r

+ , D ∈ Rn×p
+ , C ∈ Rm×n

+ and strictly pos-
itive F ∈ Rn×n

+ and (48) is taken as a basis to rede-
fine LMI guaranteing stability and disturbance trans-
fer function matrix H∞ performances, the following
theorem results.
Theorem 2. Using state feedback control law (1) in
control of (1), (2) with unknown disturbance, then
matrix F c is strictly positive and Schur if for given
strictly positive matrix F ∈ Rn×n

+ and non-negative
matrices G ∈ Rn×r

+ , D ∈ Rn×p
+ , C ∈ Rm×n

+ there
exist positive definite diagonal matrices P ,Rk ∈
Rn×n such that for j = 1, . . . , n, h = 0, 1, . . . , n− 1
and k = 1, . . . r,

P � 0, Rk � 0, γ > 0 (49)
−P ∗ ∗ ∗

FP −
m∑
k=1

Gdkll
TRdk −P ∗ ∗

CP 0 −γIm ∗
0 DT 0 −γIp

 ≺ 0

(50)

LhF (j, j + h)(∆)L
hTP −

r∑
k=1

LhGdkL
hTRk � 0

(51)
where matrix design parameters are given in (4), (7)
and (21).

If the above conditions are feasible it yields (32)
and the strictly positive K is constructed using (12).
Proof. Inserting (44) into (48) then (48) implies (50).
This concludes the proof.
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4 H2 Control Synthesis
Before giving the results for H2 control synthesis the
following preliminaries are presented.

Lemma 4. [17] Given Schur F c and G, C from (45),
(46), then

δ2 = tr (CSCT) (52)

F cSF
T
c − S +GGT = 0 (53)

where S ∈ Rn×n is symmetric positive definite con-
trollability Gramian of (F c,G) and δ ∈ R+ is H2

norm of the reference input system transfer function.

Corollary 1. As a consequence, there exists symmet-
ric positive definite matrix P ∈ Rn×n such that

F cPFT
c − P +GGT ≺ 0 (54)

while the above Lyapunov inequality implies that (54)
is negative definite if and only if F c is Schur.

The above gives the base to formulate the design
condition for discrete-time strictly positive systems.

Theorem 3. Using state feedback control law (1) in
control of (1), (2), then matrix F c is strictly positive
and Schur if for given strictly positive F ∈ Rn×n

+

and non-negative G ∈ Rn×r
+ , C ∈ Rm×n

+ there exist
strictly positive definite diagonal matrices P ,Rk ∈
Rn×n

+ , V ∈ Rm×m
+ and a positive scalar η ∈ R+

such that for j = 1, . . . , n, h = 0, 1, . . . , n − 1 and
k = 1, . . . r

P � 0, V � 0, Rk � 0, η > 0 (55)

LhF (j, j + h)(∆)L
hTP −

r∑
k=1

LhGdkL
hTRk � 0

(56)−P FP −
r∑

k=1

Gdkl l
TRk G

∗ −P 0
∗ ∗ −Ir

 ≺ 0 (57)[
P PCT

∗ V

]
� 0 (58)

min
η

subject to (V − ηIm) ≺ 0 (59)

When the above conditions are satisfied then, using
in (2), the strictly positive kT

k are given by (32) and
guaranties H2 norm performances such that η ≥ δ.

Proof. Using (54) the equivalent matrix inequality is −P F cP G
PFT

c −P 0
GT 0 −Ir

 ≺ 0 (60)

and inserting (44) then (60) results in (57).

Moreover, P � S leads to the fact relating (52)

tr (CPCT) > tr (CSCT) = δ2 (61)

and adjusting that

V � CPCT = CPP−1PCT (62)

with V ∈ Rm×m being diagonal positive definite
matrix, then (62) implies (58) and it yields [15]

‖V ‖2 =
√

ζmax(V
TV ) = λmax(V) (63)

where λmax is maximal eigenvalue of V . This gives

V − ηIm ≺ 0, η > λmax (64)

which leads to minimization in the sense of (59). This
concludes the proof.

5 Mixed H2/H∞ Control Synthesis
The following theorem can be derived directly from
Theorem 2 and Theorem 3 and its proof is omitted.

Theorem 4. Using state feedback control law (1) in
control of (1), (2), then matrix F c is strictly positive
and Schur if for given strictly positive F ∈ Rn×n

+

and non-negative G ∈ Rn×r
+ , C ∈ Rm×n

+ , D ∈
R

n×p
+ there exist strictly positive definite diagonal

matrices P ,Rk ∈ Rn×n
+ , V ∈ Rm×m

+ and posi-
tive scalars γ, η ∈ R+ such that for j = 1, . . . , n,
h = 0, 1, . . . , n− 1 and k = 1, . . . r

P � 0, V � 0, Rk � 0, γ > 0, η > 0 (65)

LhF (j, j + h)(∆)L
hTP −

r∑
k=1

LhGdkL
hTRk � 0

(66)
−P ∗ ∗ ∗

FP −
m∑
k=1

Gdkll
TRdk −P ∗ ∗

CP 0 −γIm ∗
0 DT 0 −γIp

 ≺ 0

(67)−P FP −
r∑

k=1

Gdkl l
TRk G

∗ −P 0
∗ ∗ −Ir

 ≺ 0 (68)

[
P PCT

∗ V

]
� 0 (69)

min
η

subject to (V − ηIm) ≺ 0 (70)

When the above conditions are satisfied then, using
in (2), the strictly positive kT

k are given by (32) and
guaranties H2 norm in such a way that η > δ.
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Remark 3. In the case of more than one criterion
it can deduce that by this way multiple closed-loop
performances can be ensured concurrently, since in
the constraints represented by given set of LMIs (the
LMIs related to parametric constraint, an Lyapunov
LMI guaranteing asymptotic stability, the set of LMI
extensions representing H2 and H∞ norm constraints
given on the associated transfer function matrices)
the controller considered in each inequality is the
same. Concretely, it can be summarized that such
kind of the multi-objective synthesis is definable for
strictly positive discrete-time linear systems as an
LMI optimization problem, which may be efficiently
solved.

Moreover, because the H∞ synthesis is essentially
based on the worst-case performance analysis and
the H2 norm reflects an average performance, the
idea of combining these two types of closed-loop per-
formances means that mixed H2/H∞ approach indi-
rectly forces the formalism based on the H2 norm.
Such construction of this formulation for synthesis is
crucial since if H∞ norm would not be tied to the
disturbance transfer function matrix but to the con-
trol input transfer function, the condition δ < γ will
cause that the H∞ constraint stays redundant.

6 Enhanced Mixed H2/H∞ Control
Introducing a slack matrix H , matrices F , G, C, D
can be decoupled from the Lyapunov matrix which
admits more freedom and reduces the conservative-
ness.

Theorem 5. Using state feedback control law (1) in
control of (1), (2), then matrix F c is strictly positive
and Schur if for given strictly positive F ∈ Rn×n

+ and
non-negative G ∈ Rn×r

+ , C ∈ Rm×n
+ , D ∈ Rn×p

+
there exist strictly positive definite diagonal matri-
ces P ,H,Rk ∈ Rn×n

+ , V ∈ Rm×m
+ and posi-

tive scalars γ, η ∈ R+ such that for j = 1, . . . , n,
h = 0, 1, . . . , n− 1, k = 1, . . . r

P � 0,H � 0,V � 0,Rk � 0, γ > 0, η > 0 (71)

LhF (j, j + h)(∆)L
hTH −

r∑
k=1

LhGdkL
hTRk � 0

(72)
−P ∗ ∗ ∗

FH −
m∑
k=1

Gdkll
TRdk P−2H ∗ ∗

CH 0 −γIm ∗
0 DT 0 −γIp

 ≺ 0

(73)P−2H FH −
r∑

k=1

Gdkl l
TRk G

∗ −P 0
∗ ∗ −Ir

 ≺ 0 (74)

[
P HCT

∗ V

]
� 0 (75)

min
η

subject to (V − ηIm) ≺ 0 (76)

When the above conditions are satisfied then the
strictly positive kT

k are given as

Kdk = RkH
−1,kT

k = lTKdk, l
T= [1 · · · 1] (77)

and guaranties H2 norm system performances in such
a way that η > δ while γ is minimized interactively.

Proof. Defining the diagonal positive definite matri-
ces Q,H ∈ Rn×n

+ such that it holds

(Q−1 −H−1)Q(Q−1 −H−1) � 0 (78)

H−1QH−1 � 2H−1 −Q−1 (79)

Q � 2H −HQ−1H (80)

Considering that (48) is satisfied for the above
given diagonal positive definite matrix Q that is−Q QFT

c QCT 0
F cQ −Q 0 D
CQ 0 −γIm 0
0 DT 0 −γIp

 ≺ 0 (81)

and introducing the block diagonal matrix

T∞ =
[
HQ−1 In Im Ip

]
(82)

then pre-multiplying the left side by T∞ and post-
multiplying the right side by TT

∞ (81) implies−HQ−1H HFT
c HCT 0

F cH −Q 0 D
CH 0 −γIm 0
0 DT 0 −γIp

 ≺ 0 (83)

Denoting

P = HQ−1H, Q � 2H − P (84)

then (83) can be approximated as −P HFT
c HCT 0

F cH −2H + P 0 D
CH 0 −γIm 0
0 DT 0 −γIp

 ≺ 0 (85)

and it is evident that the Lyapunov matrix P is de-
coupled from the matrix system parameters.
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Writing analogously to (44)

F cH = FH −
m∑
k=1

Gdkll
TKdkH (86)

then with the notation

Rk = KdkH (87)

(85) implies (73) and (34) is modified as

F (j, j+h)(∆)L
hTH −

r∑
k=1

GdkL
hTRdk � 0 (88)

to obtain (72) multiplying the left side of (88) by Lh.
Also it can consider that (60) is satisfied for the

above defined Q that is −Q F cQ G
QFT

c −Q 0
GT 0 −Ir

 ≺ 0 (89)

Introducing the block diagonal matrix

T 2 =
[
In HQ−1 Ir

]
(90)

then pre-multiplying the left side by T 2 and post-
multiplying the right side by TT

2 (89) implies −Q F cH G
HFT

c −HQ−1H 0
GT 0 −Ir

 ≺ 0 (91)

and with the notation (84) then LMI (91) can be ap-
proximated as−2H + P F cH G

HFT
c −P 0

GT 0 −Ir

 ≺ 0 (92)

Thus, using (86) then (92) implies (74).
Since for the given Q also it has to be satisfied the

matrix inequality[
Q QCT

CQ V

]
� 0 (93)

then introducing the positive definite block diagonal
matrix

T =
[
HQ−1 Im

]
(94)

and pre-multiplying the left side by T and post-
multiplying the right side by TT (93) implies the
equivalent inequality[

HQ−1H HCT

CH V

]
� 0 (95)

Thus, with notation (84) then (95) implies (75). Be-
cause the inequality (59) stays unchanged, this con-
cludes the proof.

Zero elements of non strictly positive F a priori
generate new boundaries to establish a non-negative
gain matrix K. Reflecting such boundaries, it is pos-
sible to mimic the theory developed above to solve
design task for only positive linear discrete-time sys-
tems. Since in design conditions only structured vari-
ables are defined, the proof of the theorem is omitted.

Theorem 6. If system (1), (2) is only positive and
an element fαβ , α, β ∈ 〈1, n〉 of the matrix F is
zero, then F c is positive and Schur and its element
fcαβ is zero if for given non-negative G ∈ Rn×r

+ ,
C ∈ Rm×n

+ , D ∈ Rn×p
+ there exist positive definite

diagonal matrices P ,H ∈ Rn×n
+ , V ∈ Rm×m

+ , pos-
itive scalars γ, η ∈ R+ and alternatively

i. positive definite diagonal matrices Rk ∈ Rn×n
+

(if all elements gαk, are zero),
ii. positive semi-definite diagonal matrices Rk ∈

Rn×n
+ (if minimally one elements of gαk is positive)

such that for j = 1, . . . , n, h = 0, 1, . . . , n − 1, k =
1, . . . ,m,

P � 0, H � 0, V � 0, γ > 0, η > 0 (96)

LhF (j, j + h)(∆)L
hTH −

r∑
k=1

LhGdkL
hTRk � 0

(97)
−P ∗ ∗ ∗

FH −
m∑
k=1

Gdkll
TRdk P−2H ∗ ∗

CH 0 −γIm ∗
0 DT 0 −γIp

 ≺ 0

(98)

P−2H FH −
r∑

k=1

Gdkl l
TRk G

∗ −P 0
∗ ∗ −Ir

 ≺ 0 (99)

[
P HCT

∗ V

]
� 0 (100)

min
η

subject to (V − ηIm) ≺ 0 (101)

where
i. Rk= diag [r1k · · · rβ,k · · · rnk]
ii. Rk= diag [r1k · · · rβ−1,k 0 rβ+1,k · · · rnk]

and
i. rlk > 0 for l = 1, . . . , n, k = 1, . . . ,m
ii rlk > 0 for l = 1, . . . , n, k = 1, . . . ,m, l 6= β

and rβk = 0 for l = β.

When the above conditions hold (77) implies kT
k and

i. K is a strictly positive matrix,
ii. K is a non-negative matrix.
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The procedure can also be applied when more than
one zero element occurs in F . It should be noted,
however that the number of columns of a matrix F
containing at least one non-zero element must be less
than n, while existence of a solution being bound to
fulfill the above LMIs conditions for structured diag-
onal matrix variables Rk, having the zero columns
reflecting those columns of F which contains one
or more zero elements. Obviously, such a design of
structured matrix variables is always done ad hoc.

Note, the above given set of matrix inequalities in
Theorem 5 can be simple restructured to obtain en-
hanced design conditions for H2 or H∞ control de-
sign of strictly linear positive systems. Similarly, the
set of matrix inequalities in Theorem 6 can be re-
structured to obtain standard or enhanced design con-
ditions for H2 or H∞ control design for non-strictly
linear positive systems.

Proposition 1. Considering the state space descrip-
tion of an autonomous linear continuous-time system
in the form

q̇(t) = Aq(t) (102)

where q(t) ∈ Rn, A ∈ Rn×n, then (102) implies

q(t) = eAtq(0) = Φ(t)q(0) (103)

where the fundamental matrix is constructed by the
following application of the inverse Laplace trans-
form Φ(t) = L−1{(sIn −A)−1}.

The discrete-time form associated with (102) is

q(i+ 1) = Fq(i) (104)

where [18]

F = eAts = In+A
ts
1!
+A2 t

2
s

2!
+A3 t

3
s

3!
+ · · · (105)

and ts is the optimal sampling period satisfying the
Whittaker-Nyquist-Kotelnikov-Shannon theorem.

When the derivative of q(t) at the point t = its is
approximated by the difference quotient

q̇(t)|t=its

.
=

q(i+ 1)− q(i)

ts
(106)

(102) implies the relation

q(i+ 1)
.
=

(
In +A

ts
1!

)
q(i) = F 1q(i) (107)

If the considered class of positive linear
continuous-time systems is characterized by Metzler
structure of the system matrix A in which all the
off-diagonal elements are nonnegative (equal to or
greater than zero) and all the diagonal elements
are negative, it is evident that F 1 certainly takes a

nonnegative structure (positive diagonal elements
and nonnegative off-diagonal elements) but F takes,
in general, a strictly positive structure.

If all the off-diagonal elements of a Metzler matrix
are positive (it contains no zero entry), this matrix
structure is noted as strictly Metzler matrix. In this
case F 1 is strictly positive and F , in general, too.

Thus, linear discrete-time not strictly positive sys-
tems are rather an exception, obtained only in the
case when the sampling period is so small that F is
equal to F 1 and the off-diagonal element of a Metzler
matrix are nonnegative.

7 Illustrative Examples
To illustrate proposed concepts, the results are pre-
sented for a strictly positive discrete-time linear sys-
tem and for a positive discrete-time linear system.

Retaining the nomenclature of strictly positive
systems, system (1), (2) is defined by the parameters

F =

0.9361 0.0116 0.1219 0.1149
0.0112 0.9197 0.0375 0.0156
0.0198 0.0792 0.8784 0.1098
0.0022 0.0428 0.0035 0.9593



G =

0.0081 0.0043
0.0110 0.0041
0.0028 0.0063
0.0025 0.0034

 , D =

0.01400.0150
0.0223
0.0061


C =

[
0 1 0 0
0 0 0 1

]
which in the considered notation means that G, D are
strictly positive, C is non-negative and F is strictly
positive but not Schur, since

ρ(F ) = { 1.0273, 0.8393, 0.9134± 0.0217 i }

The auxiliary parameters implying from (4), (7) and
(21)are

L =

[
0T 1
I3 0

]
, lT = [1 1 1 1] , (∆) = (1 ↔ 4)/4

F (j, j)(∆)=diag [0.9361 0.9197 0.8784 0.9593]

F (j, j+1)(∆)=diag [0.0116 0.0375 0.1098 0.0022]

F (j, j+2)(∆)=diag [0.1219 0.0156 0.0198 0.0428]

F (j, j+3)(∆)=diag [0.1149 0.0112 0.0792 0.0035]

Gd1 = diag [0.0081 0.0110 0.0028 0.0025]

Gd2 = diag [0.0043 0.0041 0.0063 0.0034]

Setting iteratively η = 0.056 when solving (71)-
(76) by Self-Dual-Minimization (SeDuMi) package,
the LMI variables are

V = diag [0.0512 0.0462] , γ = 1.7247

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.28 Dušan Krokavec, Anna Filasová

E-ISSN: 2224-2856 277 Volume 15, 2020



a)
0 1 2 3 4 5 

t [s], t
s
 = 0.02 s

0

1

2

3

4
q(

t)

q
1
(t)

q
2
(t)

q
3
(t)

q
4
(t)

b)
0 1 2 3 4 5 

t [s], t
s
 = 0.02 s

0

0.5

1

1.5

2

2.5

y(
t)

y
1
(t)

y
2
(t)

Figure 1: Positive system: a) state response b) output
response

P = diag [0.8122 0.0485 0.2631 0.0362]

H = diag [0.8247 0.0474 0.2606 0.0355]

R1 = diag [0.3437 0.0113 0.3293 0.0036]

R2 = diag [0.0240 0.0994 0.0157 0.1196]

Correspondingly, the strictly positive matrices

K =

[
0.4168 0.2376 1.2636 0.1026
0.0291 2.0969 0.0602 3.3648

]

F c =

0.9326 0.0007 0.1114 0.0996
0.0065 0.9085 0.0234 0.0007
0.0184 0.0653 0.8745 0.0883
0.0001 0.0351 0.0001 0.9476


are obtained as the results, where F c is Schur because

ρ(Fc) = { 0.8422 0.9908 0.9151± 0.0193 i }

Note, H2 norm of the closed-loop transfer functions
matrix is δ = 0.0557 and is within tolerance of η.

Demonstration for a not strictly positive case with
F (1, 2) = F (3, 4) = 0 considers the system matrix

F =

0.9361 0 0.1219 0.1149
0.0112 0.9197 0.0375 0.0156
0.0198 0.0792 0.8784 0
0.0022 0.0428 0.0035 0.9593


The non-negative F defined in such a way is not
Schur because

ρ(F ) = { 1.0122, 0.8313, 0.9250± 0.0118 i }
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Figure 2: Strictly positive system: a) state response
b) output response

This parameter structure of F means that only the
axially parameter noted above as the diagonal matrix
F (j, j+1)(∆) is changed in such a way that

F(j, j+1)(∆) = diag [0 0.0375 0 0.0022]

while F (j, j)(∆), F (j, j+2)(∆), F (j, j+3)(∆), Gd1,
Gd2 stay unchanged.

To solve this task using the set of LMIs defined by
Theorem 6, the following structured matrix variable
are defined

R1 = diag [r11 0 r31 0]

R2 = diag [r12 0 r32 0]

Thus, setting interactively η = 0.092 to solve
(96)–(101), the feasible solution means

V = diag [0.0756 0.0769] , γ = 4.6988

P = diag [1.2379 0.0548 0.2250 0.0582]

H = diag [1.2393 0.0544 0.2234 0.0579]

R1 = diag [0.5803 0 0.3047 0]

R2 = diag [0.0069 0 0.0039 0]

and this set of variables predefines non-negative ma-
trices

K =

[
0.4683 0 1.3637 0
0.0055 0 0.0177 0

]
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F c =

0.9323 0 0.1108 0.1149
0.0060 0.9197 0.0224 0.0156
0.0185 0.0792 0.8745 0
0.0001 0.0428 0.0001 0.9593


where the set of eigenvalues

ρ(F c) = { 0.9955 0.8364 0.9289± 0.0038 i } .

conveys that F c is Schur and H2 norm of the closed-
loop transfer functions matrix δ = 0.0914 is within
tolerance of η = 0.092.

It can also see that the second and forth column of
F are identical with associated columns of F c. For
example, if f24 of F would be also zero, the structure
of K stays unchanged (the same structural matrix
variables R1, R2 are used) but the matrix elements
of K and F c will be different comparing with the
last given, since F (j, j+2)(∆) would be also changed
in consequence.

The obtained solution for strictly positive system
is illustrated in Fig. 2, and is indicated by K solved
within conditions defined by Theorem 5 for a strictly
positive system. The used schemes have to reflect
facts that the state vector q(i) as well as the output
vector y(i) would be positive also in the case of neg-
ative feedback related to forced mode control

u(i) = −Kq(i) +Ww(i)

Since, by using the static decoupling principle, the
signal gain matrix

W =

[
17.1517 −19.4574

−22.9244 29.5269

]
is signum indefinite, a non-negative initial system
state q(0) has to be set to obtain positive state and
output time responses. This concept of positive sim-
ulations is executed in Matlab framework, with the
desired system output vector wT(i) = [2 1] and
qT(0) = [0 0 0.5 0.2], σ2

d = 0.0064.
Using the nonnegative matrix K which is given

by feasible solution of Theorem 6 for the considered
positive system parameter modification, the forced
mode is supported by the same desired output vector
and

K =

[
0.4683 0 1.3637 0
0.0055 0 0.0177 0

]
W =

[
17.1605 −14.5538

−25.2042 22.6488

]
qT(0) = [0 0 2.2 0.4] , σ2

d = 0.0064

while time responses are in Fig. 1. It demonstrates
also for non-strictly positive linear systems that all
system output variables reach their desired values at
the steady state.

This kind of simulations are included to high-
light the presented theoretical results and some per-
formances of control structures of discrete-time pos-
itive systems also from system working point setting
view.

The synthesis principle is based on the construc-
tion of a base set of LMIs, the feasibility of which
guarantees that the control law gain matrix will be
(strictly) positive and the closed-loop system matrix
will also be (strictly) positive. The addition of ad-
ditional LMIs introduces into synthesis the require-
ments regarding generally asymptotic stability, D-
stability, boundaries of the transfer function matrix
norms, limits of variables in terms of LQ control, etc.
Analysing the above feasible example results, it is ev-
ident that prescribed algebraic parametric constraints
are met and a solution guaranties strictly positive-
ness (non-negativeness) of the control gain matrices
K and stability of the strictly positive (non-negative)
closed-loop system matrix F c. At the same time, in
the forced control mode it necessitates to ensure pos-
itiveness of the state and input variables by appropri-
ate choice of non-negative system initial state vector.

One from the properties of enhanced design con-
ditions is that F c is more closest to nonnegative struc-
ture than F c with K designed in a standard way.
Since (84) implies that 2H − P � 0, it gives a fea-
sible set of LMI variables being closest to potential
singularities in parameter constraints, defined by de-
sired positive structure of closed-loop system matrix,
as it is indicated also by the numerical results.

8 Concluding Remarks
An extended approach for synthesis of the state feed-
back controllers, destined for MIMO linear posi-
tive discrete-time systems and reflecting optimized
H2/H∞ norm attenuation is derived in the paper. The
concept of the proposed design method for the control
of positive linear systems was created on the basis of
an analysis of the properties of methods that use only
LMI formulation. Since control design principle for
mentioned system class exploits the principle of diag-
onal stabilization, to accomplish that the closed-loop
system matrix be (strictly) positive and Schur, design
conditions are established in terms of LMIs linked to
positive (semi)definite diagonal matrix variables. The
illustrative examples confirm effectiveness of the de-
sign principles.

The main idea of the presented state control syn-
thesis, which optimizes upper boundary values of the
transfer function matrix norms, is reduced to a feasi-
ble problem using the technique of linear matrix in-
equalities. The LMIs representation of closed-loop
system matrix parametric constraints is found, the de-
sign conditions are deduced with expression through
a slack matrix principle and the variables positivity of
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the system controlled in the forced mode is proposed
by a nonnegative system initial state. The analysis
carried out clearly exhibits the usefulness of LMI rep-
resentation to apply the state-space relations for solu-
tions with Schur positive matrices for the multivariate
case of linear discrete-time systems and the reduction
the conservativeness when enhanced principle is ap-
plied.

The simulation conditions correspond to the con-
sidered class of discrete-time systems, feasibility of
the synthesis conditions with respect to the defined
parametric boundaries and reflect the behavior of the
controlled system in a noise environment. The only
exception that does not enter the synthesis conditions
is the control signal gain, resulting from the princi-
ple of static untying. Since structure of this gain ma-
trix is not compatible with the principle of diagonal
stabilization of positive systems, the desired positive
system behavior can be achieved only by appropriate
choice of the system initial conditions.

The obtained results cover as possible complex-
ity of the given type of algorithms. Modified ap-
proach efficiency is a scope of further study in devel-
oping research ways to formulate conditions on the
in general not positive discrete-time linear systems,
concerning the existence of a positive realization of
the control law gain matrix (existence problem), to
provide approaches in constructing such gains (opti-
mization problem) and to find how the positive real-
izations can be related to continuous-time non Met-
zlerian systems (generalization problem). It is also
planed to study the effects of additive constraints in-
tegration into the linear matrix inequalities that may
help in deciding among a set of feasible solutions.
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