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Abstract: - For efficiency of active control systems for seismically excited structures, and optimization process 

in need. This optimum design is defined according to the certain properties of structures, whereas the structural 

properties are found via several assumptions done in material strengths calculations and variable loading. These 

factors affect the mass and stiffness of the structure, but it is known that the main factor in the optimum design 

of control systems is the frequency that is related to mass and stiffness, generally. In this study, the stiffness of 

multiple degrees of freedom structure was reduced and increased to investigate the effect of the robustness of 

optimum active control systems for uncertainties. The numerical examination is done for a structure with an 

active tuned mass damper (ATMD) that is positioned on the top of the structure. For ±20 stiffness change of 

structure, the efficiency of ATMD is between 0.99% and 12.63% for the reduction of maximum displacement. 
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1 Introduction 
The known history of the world has witnessed a 

constant change and adaptation of human beings 

due to their struggle with nature. Especially in 

recent years, with the number of people approaching 

approximately 8 billion, the changing and 

diversifying needs of people led to a rapid change in 

the face of the world. This change occurs in almost 

every aspect of life, such as the increase in the rate 

of urbanization, the rise of buildings, the increase in 

energy needs, the expansion of high-speed train 

networks and highways due to the need for a global 

supply chain and urbanization. However, this 

change brings with it new problems that need to be 

solved. This change and diversity in structural 

systems require them to produce new and innovative 

solutions, especially for structural engineers who 

have an important responsibility in the creation of 

the infrastructure of this change. 

Structural control systems developed as a part of 

these solutions are among the systems that are 

frequently used in order to provide structural safety 

and comfort against earthquake and wind-like 

vibrations, especially in developed countries in the 

earthquake zone. Tuned mass dampers have an 

important place in terms of structural application 

area among control systems with active, passive, 

semi-active and hybrid-like varieties. In the field of 

practical application, this situation has also led to a 

lot of research on tuned mass dampers. 

Some of the scientific studies related to active 

tuned mass dampers investigated in this study are 

mentioned in this section. 

In 1996, Ankireddi and Yang investigated the 

effectiveness of the ATMD system against structural 

responses caused by wind loads in tall buildings [1]. 

The effectiveness of the isolation systems attached 

to TMD and ATMD controlled structures was 

examined by Loh and Chao [2].  Yan et al. obtained 

analytical expressions to be used in calculating the 

control force [3]. The performances of FLC (Fuzzy 

Logic Controller) and LQG (linear quadratic 

Gaussian) on vibrations control of tall buildings 

controlled with ATMD against along wind 

excitations was tested by Aldawod et al. [4]. In the 

study, a 76-story building in Melbourne, Australia 

was considered, and it was concluded that the FLC 

algorithm has slightly better performance. A similar 

study was also conducted by Samali et al. and it is 

demonstrated that the performance of the FLC 
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algorithm is better than LQG [5]. Active multi-tuned 

mass dampers (AMTMDs) have also been 

investigated and suggested to be used to reduce 

structural vibration due to ground motion [6-10].  

In the other study, Pourzeynali et al. developed 

a method combining genetic algorithm (GA) and 

FLC to suppress vibration of high rise buildings 

under seismic excitations [11]. Guclu ve Yazici 

examined the ATMD system using PD 

(proportional+ derivative) control and FLC. 

Accordingly, it was concluded that FLC has more 

effective active control performance [12]. Then, a 

combination of PID (proportional+integral and 

derivative) control and FLC was proposed [13]. 

FLC algorithm was also modified with a self-

tunning mechanism to improve control strategy 

[14]. Li et al. introduced a design methodology for 

AMTMD to attenuate translational and torsional 

responses in asymmetric structures [15]. In the other 

study, Li also considered soil-structure interaction 

(SSI) for AMTMD attached to asymmetric 

structures [16]. A hybrid system consisting of 

ATMDs was proposed for retrofit of irregular 

buildings against translational and torsional 

responses due to seismic excitations by Venanzi and 

Materazzi [17]. Then, a methodology using a hybrid 

system was developed to reduce flexural and 

torsional responses in tall buildings [18]. Sugumar 

et al. compared stochastic algorithm and LQG 

regulator for building frames with ATMD. In the 

study, the stochastic algorithm provided more 

effective seismic control [19]. Amini et al. 

employed particle swarm optimization (PSO) and 

linear quadratic regulator (LQR) in the calculation 

of active force. The study demonstrated that PSO 

provides better solutions for the structures subjected 

to near-fault excitations [20]. Fitzgerald et al. 

implemented ATMD to a wind turbine to control in-

plane vibrations of blades [21].  

In 2014, two identical ATMDs were applied to 

the 90th story of The Shanghai World Financial 

Center Tower by Lu et al. against wind loads [22]. 

Shariatmadar and Meshkat Razavi introduced an 

active control procedure using both PSO and FLC 

[23]. Soleymani and Khodadadi presented a multi-

objective methodology using GA and FLC in order 

to mitigate dynamic vibrations due to earthquake 

and wind loads. The method was tested on a 

benchmark 76-story building in Australia, 

Melbourne. However, the optimum design against 

earthquake excitations was not adequate for the 

reduction of wind-induced vibrations and vice versa 

[24]. Considering similar building, the cuckoo 

search (CS) algorithm was proposed to be involved 

in the calculation process of active forces by Zabihi 

Samani and Amini [25]. For the seismically excited 

high-rise buildings, PD, PID and LQR controllers 

were also examined. Under strong ground motions, 

PD and PID had superior performance than LQR. 

Additionally, PID was more effective in the 

mitigation of structural responses than PD [26]. In 

2018, Heidari et al. suggested the use of a hybrid 

controller including LQR and PID controller to 

attenuate seismic excited vibrations. In the design of 

this hybrid controller, CS was employed [27]. Park 

et al. developed a control procedure based on a 

coupling type ATMD for adjacent buildings [28]. 

To improve seismic control of super-tall buildings, 

Li and Cao proposed an inerter to integrate into the 

ATMD system [29]. In the other study, an optimal 

design methodology-based sliding mode control was 

presented [30]. For the optimum tuning of ATMDs, 

metaheuristic algorithms were also investigated [31-

35]. Also, these algorithms have been used in 

various control systems [36-40].  

As it is known, structural engineers perform 

their structural designs under various material and 

structural behavior presuppositions. However, 

regardless of the complexity of the calculations and 

the sophistication of the theory used, in any case, 

the existing parameters of the structure may differ 

from the values used in the design. Among the 

reasons for these are that the structure cannot be 

manufactured in accordance with the design 

acceptances, or the behavior is not in accordance 

with the acceptances, and it contains manufacturing 

(workmanship) defects. These can be added to the 

differences in the inhomogeneous behavior of 

concrete-like materials that are frequently used in 

buildings. All these situations may cause a risky 

situation in terms of structural security. 

In this study, unlike the studies in the literature, 

the effect of uncertainties (differences) in the 

structural parameters that will occur due to the 

mentioned situations on the change of behavior of 

an ATMD-controlled structure has been examined. 

For this purpose, in an ATMD-controlled structure 

designed under certain structural stiffnesses, 

analyzes were made under eight different situations 

according to the deviations that may occur due to 

uncertainty in the floor stiffnesses. The analysis 

results of all cases were examined in detail in terms 

of the structure's behavior under earthquakes and 

structural displacements. 

 

 

2 Methodology 
In this section, the formulations of multiple degrees 

of freedom (MDOF) structure with an optimum 

ATMD on the top are presented. The formulations 
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are given of an ATMD using proportional derivative 

integral (PID) type controllers that have optimum 

mass (md,opt), stiffness (kd,opt), damping (cd,opt), 

proportional gain (Kp,opt), derivative time (Td,opt) and 

integral time (Ti,opt). The structure mass, stiffness 

and damping coefficients are shown as mi, ki and ci, 

respectively. i represent the story number. The 

uncertainty percentage is shown as ur. 

The equation of motion of structure is shown as 

Eq. (1) where M, C and K are mass, damping and 

stiffness, respectively. 𝑥̈𝑔(𝑡) is the ground 

acceleration. In this study, a set of far-fault ground 

motions presented in FEMA P-695 [41] are used 

and the results are presented for the most critical 

excitation. F(t) represents the control force matrix 

given as Eq. (2). x(t)  (Eq.3) is the response matrix 

including displacements of N story structure (xi to 

xN) and ATMD (xd). M, K and C matrices are shown 

as Eqs. (4)-(6). The control force (Fu) is calculated 

via Eqs. (7)-(9). In these equations, Kf, iATMD, R, Ke, 

u(t), td and e(t) are trust constant, armature coil, 

resistance value, induced voltage constant of 

armature coil, control signal, derivative time and 

error signal, respectively. 

Mẍ(𝑡)+Cẋ(𝑡)+Kx(𝑡)=-M{1}𝑥̈𝑔(𝑡)+F(𝑡) (1) 
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ATMDfu iKF   (7) 

 

ATMD e d NRi +K (x -x )=u(t-td)  (8) 
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The presented equations of motions are modeled in 

Matlab with Simulink [42] and the fourth-order 

Runge-Kutta method was used for time-history 

analysis by using the constant optimum ATMD 

parameters and changing stiffness values of 

structure.   

 

 

3 Numerical Examples 
In this section, the effect of story rigidity on the 

structural responses is investigated. For that reason, 

ten case analyzes are done for different story 

rigidity. In the analysis, a ten-story shear building 

with ATMD located to the top of the story is 

considered.  

In the analysis, the optimum ATMD parameters 

that were previously founded by Jaya algorithm [35] 

are taken. Afterward, to examine the effect of 

stiffness uncertainties on the structural responses, 

analyzes were repeated for ten different cases in 

which the story stiffnesses is changed between -25% 

and 25% by increasing 5% and the results were 

compared. The cases are shown with ur values and 

story stiffnesses are given in Table 1. The value 

used in the optimization process was shown as 

constant. The structure and ATMD properties that 

are taken in the study are given in Table 2.  

For each case, critical earthquakes records that 

give the largest top story displacement among all 

records were found and their structural results were 

presented in Table 3. 
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Table 1. Cases for different story rigidity  

Case No 1 2 3 4 5 constant 6 7 8 9 10 

ur (%) -25 -20 -15 -10 -5 0 5 10 15 20 25 

Rigidity coefficient 

of each story 

(MN/m) 

487.5 520.0 552.5 585.0 617.5 650.0 682.5 715.0 747.5 780.0 812.5 

 

 

Table 2. The story and ATMD properties 

 Symbol Definition Value Unit 

Story 

properties 

mi Mass  360 ton 

ki Rigidity coefficient  520-780 MN/m 

ci Damping coefficient  6.2 MNs/m 

Optimum 

ATMD 

parameters  

md Mass  180 ton 

Tatmd Period  0.8923 s 

ξd Damping ratio  28.5447 % 

Kp Proportional gain -336.3929 Vs/m 

Td Derivative time 2003.7846 s 

Ti Integral time -6549.9725 s 

Constant 

ATMD 

parameters 

stmax Stroke limit  2 - 

R Resistance value 4.2  Ω 

Kf Trust constant 2 N/A 

Ke Induced voltage constant of armature coil 2 V 
 

 

Table 3. The top story displacements (𝑥10) and accelerations (𝑥̈10) for critical earthquakes 
Case 

no 

Earthquake 

record 
𝑥10 (m) 𝑥̈10 (m/s2) 

Earthquake 

record 
𝑥10 (m) 𝑥̈10 (m/s2) 

1 NORTHR/MUL279 0.2773 9.5510 DUZCE/BOL090 0.2462 11.4665 

2 NORTHR/MUL279 0.2741 10.4821 DUZCE/BOL090 0.2507 12.4897 

3 NORTHR/MUL279 0.2687 11.3113 DUZCE/BOL090 0.2526 13.2650 

4 NORTHR/MUL279 0.2614 12.0247 DUZCE/BOL090 0.2523 13.7751 

5 NORTHR/MUL279 0.2528 12.8045 DUZCE/BOL090 0.2503 14.4433 

opt NORTHR/MUL279 0.2433 13.4350 DUZCE/BOL090 0.2469 14.8413 

6 NORTHR/MUL279 0.2334 13.9121 DUZCE/BOL090 0.2421 15.0906 

7 NORTHR/MUL279 0.2237 14.2290 DUZCE/BOL090 0.2365 15.4685 

8 NORTHR/MUL279 0.2146 14.3782 DUZCE/BOL090 0.2308 15.6865 

9 NORTHR/MUL279 0.2058 14.7806 DUZCE/BOL090 0.2249 16.0083 

10 NORTHR/MUL279 0.1971 15.0252 DUZCE/BOL090 0.2187 16.6988 

 

From the analysis results, it is understood that 

critical earthquakes vary depending on the change in 

stiffness values. The critical earthquakes given in 

bold in the Table 3 are NORTHR/MUL279 record 

for -25% - -5% stiffness, and DUZCE/BOL090 

record for others. Considering the critical 

earthquakes, the increase in stiffnesses led to a 

decrease in the displacements whereas an increase 

in the accelerations.  

For the NORTH/MUL279 record, 9.69% 

change in displacements, 34.06% in accelerations 

(Case 1-5), and for DUZCE/BOL090 record 12.89% 

change in displacements and 12.52% in 

accelerations (Caseopt-Case10) were observed.  

Examining each case for both critical 

earthquakes, the difference between maximum 

displacements was found to be 0.99% - 12.63%. 

This difference was 8.47% - 20.05% for maximum 

accelerations.  

Also, for all cases accelerations decrease as 

stiffness increases, and DUZCE/BOL090 

earthquake caused greater story accelerations. 

Time history plots of top story displacements 

under critical earthquakes were also given in Fig 1 

and 2 for 3 cases. From the figures, values and 

location of peek points of graphs differ depending 

on changing critical earthquakes, as expected. 
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Fig. 1: Time history plots of top story displacements under NORTHR/MUL279 record. 

 
Fig. 2: Time history plots of top story displacements under DUZCE/BOL090 record. 

 

4 Conclusion 
Uncertainties in stiffness can be caused by many 

reasons such as design assumptions, differences in 

the behavior of the material (especially using non-

homogeneous materials such as concrete) or 

manufacturing errors. Depending on the quality of 

the control process during the construction of the 

structure, these uncertainties can be minimized, but 

it is not possible to completely eliminate. 

For that reason, in this study, the performance, 

efficiency and robustness of the ATMD design, of 

which parameters are obtained under ideal 

conditions, in case of such uncertainties in the 

structural system are examined. Therefore 11 case 

analyzes are performed in which the story stiffness 

is changed between -25% and +25% with %5 

increment. In the analyses, optimum ATMD 

parameters proposed by Kayabekir et al. [35] are 

considered and assumed to be constant in all cases. 

The analysis results show that uncertainties in 

the structural stiffness can be an effect on ATMD 

performance. Since the design of ATMD is done 

based on structural stiffness, the effect of these 

uncertainties on structural behavior is an expected 

situation as can be also seen from Fig. 1 and 2. The 

critical earthquake may change due to variation of 

structural stiffness. Depending on changing critical 

earthquakes, the peak values of the structural 

responses and timing of the peak values can differ. 

These differences for the peak values of the story 

displacements are between 0.99% and 12.63%. For 

the peak values of story accelerations, 8.47% - 

20.05% difference was observed.  

In addition, the maximum displacements of the 

uncontrolled system are found 0.4101 m (DUZCE/ 

BOL090) and 0.4363 m (NORTHR/MUL279) for 

critical earthquake records. These displacements are 

reduced to 0.2469 (DUZCE/BOL090) and 0.2433 m 

(NORTHR/ MUL279) by the addition of ATMD to 

the structure. In this case, it can be said that the 

ATMD design is efficient and reliable even under 

stiffness uncertainties. 

For future studies, these uncertainties are 

investigated on different models. 
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