
 

 
 

Abstract—In this work, we studied the Mössbauer spectra of magnetite samples of various compositions. To protect magnetite 
from oxidation, the resulting particles are coated with protective shells, among which silanes are promising, which polymerize on 
the surface of magnetite nanoparticles, forming strong covalent bonds. The coating of nanoparticles protects them from aggressive 
environmental influences, evens out their size distribution, and also protects the environment from the possible toxic effects of the 
particles themselves. 

It was shown that the magnetite phase predominates in the sample of native particles, the coating of native particles with 
alkoxysilane does not lead to fundamental changes in the phase state of the sample particles, and oxidation with nitric acid leads to 
the complete transformation of magnetite into maghemite. It is obvious that the reason for the distortions of the relaxation nature in 
the Mössbauer spectra of the samples is the small sizes of the iron-containing domains, which allows us to consider the description 
of the spectra within the framework of the model of multilevel superparamagnetic relaxation. 
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1. Introduction

T document is known that magnetite particles are sensitive 
to oxidation, which can lead to the appearance on the 

particle surface of a modified layer, the magnetic properties of 
which may differ from the particle core, leading to a decrease 
in the saturation magnetization. In addition, due to Van der 
Waals forces, particles tend to agglomerate. Thus, there is a 
need to stabilize magnetite nanoparticles [1],[2],[3],[4],[5],
[6],[7],[8],[9],[10],[11],[12],[13]. This will make it possible 
to control the size of the resulting particles, prevent their 
aggregation after synthesis, protect the resulting particles 
from the aggressive oxidative effects of the 
environment, and the environment itself from the toxic 
effect of the nanoparticle. There is a wide range of 
substances capable of forming a protective shell on the 
surface of magnetite nanoparticles; among them, 
alkoxysilanes are of interest as inert, biocompatible, and 
functional inorganic ligands. There are many publications 
devoted to the synthesis and characterization of silica-coated 
iron oxide nanoparticles.  
There are several ways to synthesize composite nanoparticles 
[14],[15],[16],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],

[27],[28],[29],[30].  
Modern composites have not only a wide range of 

physical and mechanical properties, but are also 
capable of directionally changing them, for example, 
increasing fracture toughness, regulating rigidity, strength, 
and other properties. These possibilities are expanded 
when fibers of different nature and geometry are used 
in composites, i.e., when creating hybrid composites. In 
addition, these materials are characterized by the 
appearance of a synergistic effect (coordinated joint 
action of several factors in one direction) [31],[32],[33],
[34],[35],[36],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46],
[47]. 

The properties of the interface or interfacial zone, first of 
all, the adhesive interaction between the fiber and the 
matrix, determine the level of properties of composites 
and their retention during operation. Local stresses in the 
composite reach their maximum values just near or 
directly at the interface, where material destruction 
usually begins. The interface must have certain 
properties to ensure efficient 

Study of Magnetite Nanoparticles by the Method of Mössbauer 

Spectroscopy 

G. I. KRIVEN1,2, YING SUN3,
1Moscow Aviation Institute (National Research University), 

Moscow, Volokolamskoe shosse, 4, 125993,  
RUSSIA 

2Institute of Applied Mechanics of RAS,  
Moscow, Leningradsky prt. 7, 125040,  

RUSSIA 
3Department of Mechanical Engineering,  
Hangzhou Xiaoshan Technician College,  

Hangzhou Zhejiang, 448 Tonghui South Road, Xiaoshan District, 311200, 
CHINA.  

Received: March 27, 2021. Revised: September 1, 2021. Accepted: September 13, 2021. Published: September 21, 2021.

I 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.17 G. I. Kriven, Ying Sun

E-ISSN: 2224-3429 158 Volume 16, 2021



 

transfer of the mechanical load from the matrix to the fiber. 
The adhesion bond at the interface should not be destroyed 
under the action of thermal and shrinkage stresses arising from 
the difference in the temperature coefficients of linear 
expansion of the matrix and fiber or as a result of chemical 
shrinkage of the binder during its curing. 

When creating nanocomposites, the key tasks are the 
development of efficient, reliable, and affordable production 
technologies for mass production, which make it possible to 
obtain materials with stable characteristics. The hand lay 
technique, also called wet lay, is the simplest and most widely 
used process for producing flat reinforced composites. The 
process consists of laying layers of a polymer in successive 
layering using an epoxy matrix. Wet-laying is a molding 
process that combines layers of reinforced carbon fiber with 
epoxy to create a high-quality laminate. Before starting the 
installation process, you must prepare the appropriate form. 
This preparation consists of cleaning the table and applying a 
release agent to the surface. The manual laying process can be 
divided into four main steps: mold preparation, epoxy coating, 
laying and curing. Form preparation is one of the most 
important steps in the installation process. This process 
requires dry reinforcement layers and the application of a wet 
epoxy matrix. They are connected together - reinforcing 
material, impregnated with a matrix 

Nanoparticles, even with a very low volumetric content (less 
than 1%), are contained in such a fragment in a very large 
amount, and it is impossible to model their effect at this scale 
level. For example, a cubic fragment of a 1 μm matrix contains 
more than thousand nanoparticles for a given volumetric 
content. Therefore, in particular, the nano-modified binder is 
white, while the usual binder is yellow. To model such 
materials, it is necessary to resort to multiscale approaches and 
to carry out a consistent determination of effective properties 
at various scale levels. This task is greatly simplified if the 
properties of the nanomodified matrix are known from 
experiments. In particular, it is known that its Young's 
modulus is 2.5 GPa. The missing characteristic is Poisson's 
ratio, which can be approximately taken unchanged, or 
estimated on the basis of analytical calculations using the 
found value of the "effective" volumetric content of the filler, 
which was done. Further, it suffices to numerically solve the 
averaging problem on a representative fragment containing 
only nanoparticles.  

Coatings on nano and micro-sized particles can serve for 
many purposes. First of all, modification of the surface with 
coatings makes it possible to make the particles 
compatible with various matrixes [14],[15],[16],[17],[18],
[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30]. For 
medical purposes, the biocompatibility with the environments 
of a living organism is of crucial importance. It is equally 
important that coatings can significantly enhance or decrease 
the sorption properties of magnetically controlled sorbents. 
This provides prerequisites for the creation of 
magnetically controlled particles with specific sorption 
properties. It is also known that the coatings prevent the core 
from leaching out. The presence of a coating 

also often facilitates the stabilization of particles in an 
environment with an alkaline pH or significant salt 
concentration. For example, the isoelectric point of SiO2 is 
reached at pH 2-3. Therefore, the particles coated with silica 
are negatively charged at the pH of the blood, which causes 
electrostatic repulsion, which avoids the formation of clumps.  

In order to derive the equation of the adsorption isotherm, a 
number of simplifications are introduced. All the places where 
the adsorbed particles are fixed are the same, and adsorption 
on one of them does not affect the state of the other. The 
interaction between the adsorbed particles is negligible. The 
adsorption layer is monomolecular, i.e. it consists of one layer 
of molecules. In this case, the bond of the adsorbate with the 
adsorbent is sufficiently strong, which excludes the movement 
of the adsorption complex along the surface of the adsorbent 
(localized adsorption). 

Active (well absorbing) adsorbents have a very large 
specific surface area. For example, the absorbers most often 
used for scientific purposes and industrial practice - activated 
carbon, silica gel, zeolites – have s0 up to several hundred and 
even thousands of square meters per 1 g. 

The ability of the adsorbent to absorb the adsorbate is 
characterized by the amount of adsorption. The amount of 
adsorption is the excess mass of the adsorbate in the boundary 
layer over its mass in an equal volume of the environment, 
referred to the unit surface of the adsorbent. 

Sometimes the adsorption value is expressed in moles of 
adsorbate per 1 m2 (or 1 cm2) of the adsorbent surface. Since 
quite often the surface of the adsorbent is unknown, the value 
of adsorption is expressed in moles of adsorbate per 1 g of 
adsorbent (mol/g). It is customary to evaluate the process of 
toxin sorption by the adsorbing surface using the curves of 
Langmuir sorption isotherms. 

Silanol binding agents are applied directly to the surface of 
Fe3O4 nanoparticles by copolymerization of monomers or by 
direct silanization. The developed surface of nanoparticles 
leads to a high density of surface functional groups [48],[49],
[50],[51],[52],[53],[54],[55],[56],[57],[58],[59],[60],[61],[62],
[63],[64],[65],[66],[67],[68],[69],[70],[71], which can fix a 
large number of biologically active substances [32]. The most 
common way to obtain LF Fe3O4/SiO2 with a core-shell 
structure is the sol-gel method (Stober method), which 
consists in hydrolysis and polycondensation under 
alkaline conditions in ethanol [33]. 

In this regard, in this work, we performed a 
comparative analysis of the microstructure of magnetite 
nanoparticles synthesized by various methods before 
and after their modification with 3-
aminopropyltriethoxysilane under various reaction conditions 
(in argon and during oxidation). 

2. Study of magnetite samples

Methods for obtaining the studied samples of magnetite are 
presented in Table 1. Chemical analyses of the 
synthesized samples were carried out by the standard 
procedure described in our previous studies [32],[33],[34].  
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Table 1. List of obtained samples of magnetite nanoparticles. 

An analysis of the sample M - EN, obtained by oxidation of 
Fe2+ with the formation of a complex with EDTA, was carried 
out by IR spectrometry. The image of the obtained spectrum is 
shown in Figure 1. 

Fig. 1 ir spectrum for sample M - EN.

The characteristic absorption band at a wavelength of 572 
cm-1 refers to the characteristic absorption bands of the Fe-O
bond in Fe3O4, which is evidence of the formation of magnetite
nanoparticles. A low intensity absorption band at a wavelength
of 1628 cm-1 corresponds to asymmetric vibrations of the
carboxylate group COO-, indicating binding with free
Fe2+/Fe3+ ions or surface magnetite ions. The broad absorption
band at 3420 cm –1 is a characteristic region of vibration of the
OH– groups of water.

Mössbauer absorption spectra were obtained on an 
MS1104EM express Mössbauer spectrometer. The noise / 
signal ratio in the obtained spectra did not exceed 1%. The 
experimental Mössbauer spectra were mathematically 
processed for high-resolution spectra (1024 points) using the 
SpectRelax 2.4 software. Chemical shift values are given 
relative to -Fe. The spectra were described using two models 
based on the literature data on the Mössbauer parameters most 
likely for the considered samples of iron oxides: magnetite- 
Fe3O4 and maghemite γ-Fe2O3.  

Mössbauer spectra at room temperature for all samples have 
the form of distorted asymmetrically broadened sextets. In this 
case, the sextets are not symmetrical both in intensity and in 
width. So, for a sample of native particles 1-3, the resonance 
lines have a noticeably wider width and lower intensity than 
lines 4-6 (Figure 2). In this case, the intensities of the lines are 
the same within groups 1-2 and 5-6. 

Fig. 2 Mössbauer spectrum of sample M - C at 295 °C. 

All spectra can be satisfactorily described within a single 
model of five (295 K) or four (78 K) nested symmetric sextets 
and one symmetric doublet. In general, the models for 
different samples are similar to each other, and differ mainly in 
the ratio of the contributions of each of the subspectra for an 
individual sample. Thus, in the high-temperature spectra, the 
first, second, and third sextets have the largest areas 
(subspectra 1, 2, and 3, respectively). In the low-temperature 
spectra, the largest areas have 1 and 2 subspectra, and the 
areas of subspectra 3 and 4 that are close to each other in the 
samples of native and coated particles do not differ much from 
the area of subspectrum 2. These features, characterizing the 
distribution of iron atoms in crystallographic positions with 
different degrees of ordering of the local environment, 
distinguish these samples from magnetite, in which in the high-
temperature spectrum one of the "internal" sextets (similar to 
subspectrum 4) had the largest area in addition to the outer 
sextet (similar to subspectrum 1) and the areas in the low-
temperature spectrum decreased monotonically from outer to 
inner. 

As it can be also seen from the Figure 2, the ultrafine 
parameters of the subspectra of the samples of native and 
coated particles are close at room temperatures. At the same 
time, based on the data at room temperature, all sextets can be 
divided into three groups. The first combines subspectra 1 and 
4 with isomeric shifts corresponding to Fe3+ atoms in an 
octahedral oxygen environment. In the second, subspectrum 5 
with an isomeric shift corresponding to Fe3+ atoms in a 
tetrahedral oxygen environment. And, finally, subspectra 2 and 
3, which have too large values of isomeric shifts for Fe3+ iron 
atoms in the octahedral environment, but too small for Fe2.5 + 

atoms in the octahedral voids of magnetite. Obviously, these 
sextets belong to iron atoms in octahedral voids of the 
oxidized form of nanomagnetite - δ-Fe3O4, in which the 

Sample code Sample description 

M - EN Synthesis of magnetite from FeSO4 ∙ 

7H2O and EDTA with heating T = 80°C 

M - C Synthesis of magnetite from FeCl3∙6H2O 

and FeCl2∙4H2O 

M - A Modification of sample M - With APTES 

coating 

M - AO Oxidation of sample М - А with nitric acid 

HNO3 
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proportion of Fe3+ significantly exceeds that of Fe2+. At low 
temperatures, sextets regroup (including due to the Verwey 
transition), but they can also be divided into Fe3+ atoms and 
partially reduced Fe (3-x) +.  

The values of magnetic splitting obtained at room 
temperature are lower than those expected for bulk samples of 
magnetite and maghemite, which is typical for nanosized 
materials. The isomeric shifts of all subspectra of the sample 
of oxidized particles, obtained at room temperature, indicate 
that all atoms were oxidized to the Fe3+ oxidation state 
(octahedral positions). Even with low-temperature shooting, 
the isomeric shift of sextet 4 decreased significantly. 
Otherwise, the Mössbauer parameters did not undergo 
significant changes, except perhaps a noticeable increase in the 
widths of almost all subspectra, which may be associated with 
a decrease of the probability functions of the magnetic field 
distribution obtained for low-temperature Mössbauer spectra 
for all samples have the form of asymmetric unimodal 
peaks strongly shifted in the region of high fields (Figure 3). 

Fig. 3 Probability functions of magnetic field distribution: 1 - 
sample M - C, 2 - sample M - A, 3 - sample M - AO. 

As it can be seen from the Figure 3, the parameters of the 
probability functions practically do not differ from each other, 
except that for the sample of APTES-coated particles, the 
distribution maximum is located at a slightly lower field 
strength. 

From the data presented in the Figure 3 one can also 
conclude that the probability functions of the distribution of 
hyperfine parameters for high-temperature spectra are different 
for different samples. Thus, for a sample of native particles, 
the field distribution has the form of a predominantly 
asymmetric bimodal peak, with maxima localized in the region 
of high fields, and an extended "wing" extending into low 
fields (Figure 3). In the sample of coated particles (with the 
same predominant asymmetric bimodal peak), this wing is 
slightly more resolved - three local maxima are clearly 
manifested on it. Before the beginning of this "wing", two 
weak "satellites" are observed for both samples in the region 
of 255 and 300 kOe. In the sample of oxidized particles, in 
contrast to their predecessors, there is practically no "fine 
structure" on the dependence of the probability of the 
distribution of magnetic fields - the distribution has the form of 
a noticeably wider unimodal peak, with the weighted average 
shifted to lower fields. This indicates a much wider size 

distribution of the sample particles (variants of the local 
environment). It is obvious that the reason for the distortions 
of the relaxation nature in the Mössbauer spectra of the 
samples is the small sizes of the iron-containing domains, 
which allows us to consider the description of the spectra 
within the framework of the model of multilevel 
superparamagnetic relaxation. 

3. Conclusion

An examination of the data obtained makes it possible to
show that systematic changes are observed in the experimental 
spectra, which are the same at different temperatures. 
Moreover, when passing from a sample of native particles to a 
sample of coated particles, these spectra changes are less than 
from a sample of coated particles to a sample of oxidized 
particles. Thus, this gives us possibility to make a conclusion 
that the treatment of the initial sample of magnetite with 
APTES leads to a narrowing of the external profile of the 
relaxation sextet, apparently due to the sharpening of the 
internal sextets. The processing of a sample of APTES coated 
particles with nitric acid caused the removal of components 
from the right side of the spectra, and the appearance of 
components in the left side of the spectrum, i.e. in fact, we are 
talking about a shift of some sextet to the region of low 
isomeric shifts, i.e. oxidation of iron. 

This study was funded by RFBR, project number 21-38-
70008. 
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