Vet Comp Orthop Traumatol 2016; 29(03): 181-187
DOI: 10.3415/VCOT-15-08-0133
Review Article
Schattauer GmbH

Musculoskeletal modelling in dogs: challenges and future perspectives

Billy Dries
1   Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
,
Ilse Jonkers
2   Human Movement Biomechanics Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
,
Walter Dingemanse
1   Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
,
Benedicte Vanwanseele
2   Human Movement Biomechanics Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
,
Jos Vander Sloten
3   Biomechanics Section, Faculty of Engineering Science, KU Leuven, Leuven, Belgium
,
Henri van Bree
1   Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
,
Ingrid Gielen
1   Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
› Author Affiliations
Further Information

Publication History

Received: 05 August 2015

Accepted: 24 February 2016

Publication Date:
17 December 2017 (online)

Summary

Musculoskeletal models have proven to be a valuable tool in human orthopaedics research. Recently, veterinary research started taking an interest in the computer modelling approach to understand the forces acting upon the canine musculoskeletal system. While many of the methods employed in human musculoskeletal models can applied to canine musculoskeletal models, not all techniques are applicable. This review summarizes the important parameters necessary for modelling, as well as the techniques employed in human musculoskeletal models and the limitations in transferring techniques to canine modelling research. The major challenges in future canine modelling research are likely to centre around devising alternative techniques for obtaining maximal voluntary contractions, as well as finding scaling factors to adapt a generalized canine musculoskeletal model to represent specific breeds and subjects.

 
  • References

  • 1 Kuroki K, Cook JL, Stoker AM. et al. Characterizing osteochondrosis in the dog: Potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 2005; 13: 225-234.
  • 2 Whitehair JG, Vasseur PB, Willits NH. Epidemiology of cranial cruciate ligament rupture in dogs. J Am Vet Med Assoc 1993; 203: 1016-1019.
  • 3 Ginja MM, Silvestre AM, Gonzalo-Orden JM. et al. Diagnosis, genetic control and preventive management of canine hip dysplasia: A review. Vet J 2010; 184: 269-276.
  • 4 Koopman B, Grootenboer HJ, de Jongh HJ. An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J Biomech 1995; 28: 1369-1376.
  • 5 Xiang Y, Arora JS, Abdel-Malek K. Optimization-based prediction of asymmetric human gait. J Biomech 2011; 44: 683-693.
  • 6 Snijders CJ, Ribbers MT, de Bakker HV. et al. EMG recordings of abdominal and back muscles in various standing postures: Validation of a biomechanical model on sacroiliac joint stability. J Electromyogr Kinesiol 1998; 8: 205-214.
  • 7 Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 2003; 36: 765-776.
  • 8 Buchanan TS, Lloyd DG, Manal K. et al. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med Sci Sport Exerc 2005; 37: 1911-1916.
  • 9 Stewart C, Shortland AP. The biomechanics of pathological gait - from muscle to movement. Acta Bioeng Biomech 2010; 12: 3-12.
  • 10 Holzbaur KRS, Murray WM, Delp SL. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 2005; 33: 829-840.
  • 11 Bolsterlee B, Veeger DH, Chadwick EK. Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med Biol Eng Comput 2013; 51: 953-963.
  • 12 Delp SL, Statler K, Carroll NC. Preserving plantar flexion strength after surgical treatment for contracture of the triceps surae: A computer simulation study. J Orthop Res 1995; 13: 96-104.
  • 13 Arnold AS, Blemker SS, Delp SL. Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann Biomed Eng 2001; 29: 263-274.
  • 14 Carter DR, Wong M. Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 2003; 358: 1461-1471.
  • 15 Himmlová L, Dostálová T, Kácovský A. et al. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004; 91: 20-25.
  • 16 Stevens S, Beaupré GS, Carter DR. Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences. J Orthop Res 1999; 17: 646-653.
  • 17 van Rietbergen B, Weinans H, Huiskes R. et al. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 1995; 28: 69-81.
  • 18 Pistoia W, van Rietbergen B, Lochmüller E. et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002; 30: 842-848.
  • 19 Burkholder TJ, Nichols TR. Three-dimensional model of the feline hindlimb. J Morphol 2004; 261: 118-129.
  • 20 Johnson WL, Jindrich DL, Roy RR. et al. A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms. J Biomech 2008; 41: 610-619.
  • 21 Grover DM, Chen AA, Hazelwood SJ. Biomechanics of the rabbit knee and ankle: muscle, ligament, and joint contact force predictions. J Biomech 2007; 40: 2816-2821.
  • 22 Rome L, Sosnicki A, Goble D. Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size. J Physiol 1990; 431: 173-185.
  • 23 Hoy M, Zajac F, Gordon M. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech 1990; 23: 157-169.
  • 24 Wu G, Siegler S, Allard P. et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 2002; 35: 543-548.
  • 25 Zajac FE, Winters JM. Modeling musculoskeletal movement systems: joint and body segmental dynamics, musculoskeletal actuation, and neuromuscular control. In Winters JM, Woo SL-Y. editors Multiple Muscle Systems. New York: Springer; 1990: 121-148.
  • 26 Van den Broeck J, Vereecke E, Wirix-Speetjens R. et al. Segmentation accuracy of long bones. Med Eng Phys 2014; 36: 949-953.
  • 27 Scheys L, Jonkers I, Schutyser F. et al. Image based methods to generate subject-specific musculoskeletal models for gait analysis. International Congress Series 2005; 1281: 62-67.
  • 28 Clauser CE, McConville JT, Young JW. Weight, Volume, and Center of Mass of Segments of the Human Body. AMRL Technical Report, Wright Patterson Air force Base, Ohio (AMRL-TR-69-70.); Natl Tech Inf Serv 1969: 1-112. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/710622.pdf
  • 29 Yeadon MR, Morlock M. The appropriate use of regression equations for the estimation of segmental inertia parameters. J Biomech 1989; 22: 683-689.
  • 30 Martin PE, Mungiole M, Marzke MW. et al. The use of magnetic resonance imaging for measuring segment inertial properties. J Biomech 1989; 22: 367-376.
  • 31 Sharir A, Milgram J, Shahar R. Structural and functional anatomy of the neck musculature of the dog (Canis familiaris). J Anat 2006; 208: 331-351.
  • 32 Shahar R, Banks-Sills L. Biomechanical analysis of the canine hind limb: calculation of forces during three-legged stance. Vet J 2002; 163: 240-250.
  • 33 Shahar R, Milgram J. Morphometric and anatomic study of the forelimb of the dog. J Morphol 2005; 263: 107-117.
  • 34 Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res 1990; 8: 383-392.
  • 35 DeFrate LE, Sun H, Gill TJ. et al. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J Biomech 2004; 37: 1499-1504.
  • 36 Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc London B 1938; 126: 612-745.
  • 37 Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 1989; 17: 359-411.
  • 38 Millard M, Uchida T, Seth A. et al. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng 2013; 135: 021005.
  • 39 Barr R, Pandy M. Biomechanics of the Musculoskeletal System. In Kutz M. editor Standard Handbook of Biomedical Engineering and Design. New York: McGraw-Hill; 2003: 6-1-6-34
  • 40 van Leeuwen JL. Optimum power output and structural design of sarcomeres. J Theor Biol 1991; 149: 229-256.
  • 41 Burkholder TJ, Lieber RL. Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol 2001; 204: 1529-1536.
  • 42 Herzog W, Kamal S, Clarke HD. Myofilament lengths of cat skeletal muscle: theoretical considerations and functional implications. J Biomech 1992; 25: 945-948.
  • 43 Shahar R, Milgram J. Morphometric and anatomic study of the hind limb of a dog. Am J Vet Res 2001; 62: 928-933.
  • 44 Lieber RL, Yeh Y, Baskin RJ. Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J 1984; 45: 1007-1016.
  • 45 Goulding D, Bullard B, Gautel M. A survey of in situ sarcomere extension in mouse skeletal muscle. J Muscle Res Cell Motil 1997; 18: 465-472.
  • 46 Chleboun GS, France AR, Crill MT. et al. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 2001; 169: 401-409.
  • 47 Lieber RL, Loren GJ, Fridén J. In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol 1994; 71: 874-881.
  • 48 Maganaris CN, Baltzopoulos V, Ball D. et al. In vivo specific tension of human skeletal muscle. J Appl Physiol (1985) 2001; 90: 865-872.
  • 49 Powell PL, Roy RR, Kanim P. et al. Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol Respir Environ Exerc Physiol 1984; 1715-1721.
  • 50 Weijs WA, Hillen B. Cross-sectional areas and estimated intrinsic strength of the human jaw muscles. Acta Morphol Neerl Scand 1985; 23: 267-274.
  • 51 Bamman MM, Newcomer BR, Larson-Meyer DE. et al. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 2000; 32: 1307-1313.
  • 52 Arampatzis A, Stafilidis S, DeMonte G. et al. Strain and elongation of the human gastrocnemius tendon and aponeurosis during maximal plantarflexion effort. J Biomech 2005; 38: 833-841.
  • 53 Garner BA, Pandy MG. Estimation of musculotendon properties in the human upper limb. Ann Biomed Eng 2003; 31: 207-220.
  • 54 Colacino FM, Rustighi E, Mace BR. Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model. Med Eng Phys 2012; 34: 531-540.
  • 55 Birch HL, Thorpe CT, Rumian AP. Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J 2013; 3: 12-22.
  • 56 Scheys L, Spaepen A, Suetens P. et al. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 2008; 28: 640-648.
  • 57 German AJ, Holden SL, Moxham GL. et al. A simple, reliable tool for owners to assess the body condition of their dog or cat. J Nutr 2006; 136: 2031S-2033S.