Methods Inf Med 2016; 55(01): 60-64
DOI: 10.3414/ME14-11-0001
Focus Theme – Editorial
Schattauer GmbH

Methodologies, Models and Algorithms for Patients Rehabilitation

H. M. Fardoun
1   Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
,
A. S. Mashat
1   Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
› Author Affiliations
Further Information

Publication History



10 December 2015

Publication Date:
08 January 2018 (online)

Summary

Introduction: This editorial is part of the Focus Theme of Methods of Information in Medicine on “Methodologies, Models and Algorithms for Patients Rehabilitation”. Objective: The objective of this focus theme is to present current solutions by means of technologies and human factors related to the use of Information and Communication Technologies (ICT) for improving patient rehabilitation. Methods: The focus theme examines distinctive measurements of strengthening methodologies, models and algorithms for disabled people in terms of rehabilitation and health care, and to explore the extent to which ICT is a useful tool in this process. Results: The focus theme records a set of solutions for ICT systems developed to improve the rehabilitation process of disabled people and to help them in carrying out their daily life. Conclusions: The development and subsequent setting up of computers for the patients’ rehabilitation process is of continuous interest and growth.

 
  • References

  • 1 Dudeck MA, Horan TC, Peterson KD, Allen-Bridson K, Morrell G, Anttila A. et al. National Healthcare Safety Network report, data summary for 2011, device-associated module. Am J Infect Control 2013; 41 (Suppl. 04) 286-300.
  • 2 Haux R, Hein A, Kolb G, Künemund H, Eichelberg M, Appell JE. et al. Information and communication technologies for promoting and sustaining quality of life, health and self-sufficiency in ageing societies – outcomes of the Lower Saxony Research Network Design of Environments for Ageing (GAL). Inform Health Soc Care 2014; 39 3–4 166-187.
  • 3 Fardoun HM, Mashat AS, Lange B. New Methodologies for Patients Rehabilitation. Methods Inf Med 2015; 54 (Suppl. 02) 111-113.
  • 4 Laver K, George S, Thomas S, Deutsch JE, Crotty M. Cochrane review: virtual reality for stroke rehabilitation. European journal of physical and rehabilitation medicine 2002; 48 (Suppl. 03) 523-530.
  • 5 Bobillier Chaumon ME, Michel C, Tarpin Bernard F, Croisile B. Can ICT improve the quality of life of elderly adults living in residential home care units? From actual impacts to hidden artefacts. Behaviour & Information Technology 2014; 33 (Suppl. 06) 574-590.
  • 6 Fardoun HM. ICTs for improving Patient Rehabilitation Research Techniques Workshop (REHAB) in conjunction with PervasiveHealth Conference. Oldenburg, Germany: May 20, 2014 Link: http://www.rehab-workshop.org (Last view: 10/11/2015).
  • 7 Nishiguchi S, Ito H, Yamada M, Yoshitomi H, Furu M, Ito T. et al. Self-assessment of Rheumatoid Arthritis Disease Activity Using a Smartphone Application. Development and 3-month Feasibility Study. Methods Inf Med 2016; 55 (Suppl. 01) 65-69.
  • 8 Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995; 38 (Suppl. 01) 44-48.
  • 9 Omelina L, Jansen B, Bonnechère B, Oravec M, Pavlovicova J, Van Sint Jan S. Interaction detection with depth sensing and body tracking cameras in physical rehabilitation. Methods Inf Med 2016; 55 (Suppl. 01) 70-78.
  • 10 Chang CY, Lange B, Zhang M, Koenig S, Requejo P, Somboon N. et al. Towards pervasive physical rehabilitation using Microsoft Kinect. 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth); 2012 pp 159-162.
  • 11 Chang YJ, Chen SF, Huang JD. A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res Dev Disabil 2011; 32 (Suppl. 06) 2566-2570.
  • 12 Clark RA, Pua YH, Bryant AL, Hunt MA. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture [Internet] 2013; 38 (Suppl. 04) 1064-1066. Available from: http://www.sciencedirect.com/science/article/pii/S0966636213001884
  • 13 Van den Audenaeren L, Vanden Abeele V, Geurts L, Husson J, Annema J-H, Desmet S. Boneshaker. Proceedings of the 2012 ACM annual conference extended abstracts on Human Factors in Computing Systems Extended Abstracts – CHI EA ’12 [Internet]. New York, New York, USA: ACM Press; 2012. [cited Oct 23, 2014 ]. p. 2447. Available from: http://dl.acm.org/citation.cfm?id=2212776.2223817
  • 14 Alves J, Vourvopoulos A, Bernardino A, Bermúdez i Badia S. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions. Methods Inf Med 2016; 55 (Suppl. 01) 79-83.
  • 15 Buccino G, Binkofski F, Riggio L. The mirror neuron system and action recognition. Brain and language 2004; 89 (Suppl. 02) 370-376.
  • 16 Oztop E, Arbib MA. Schema design and implementation of the grasp-related mirror neuron system. Biological cybernetics 2002; 87 (Suppl. 02) 116-140.
  • 17 Bonaiuto J, Rosta E, Arbib MA. Extending the mirror neuron system model, I. Biological cybernetics 2007; 96 (Suppl. 01) 9-38.
  • 18 Oztop E, Kawato M, Arbib MA. Mirror neurons: functions, mechanisms and models. Neuroscience letters 2013; 540: 43-55.
  • 19 Peri E, Biffi E, Maghini C, Servodio Iammarrone F, Gagliardi C, Germiniasi C. et al. Quantitative evaluation of performance during robot-assisted treatment. Methods Inf Med 2016; 55 (Suppl. 01) 84-88.
  • 20 Luque-Moreno C, Oliva-Pascual-Vaca A, Kiper P, Rodriguez-Blanco C, Agostini M, Turolla A. Virtual reality to assess and treat lower extremity disorders in post-stroke patients. Methods Inf Med 2016; 55 (Suppl. 01) 89-92.
  • 21 Riva G. Applications of virtual environments in medicine. Methods Inf Med 2003; 42: 524-534.
  • 22 Laver K, George S, Thomas S. et al. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med 2012; 48: 1-2.
  • 23 Mirelman A, Patritti BL, Bonato P. et al. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 2010; 31: 433-437.
  • 24 Turolla A, Dam M, Ventura L. et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil 2013; 10: 85.
  • 25 Piron L, Turolla A, Agostini M. et al. Assessment and treatment of the upper limb by means of virtual reality in post-stroke patients. Stud Health Technol Inform 2009; 145: 55-62.
  • 26 Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dys-function after stroke: preliminary data from a randomized controlled trial. Biomed Res Int 2014; 2014: 752128.
  • 27 Gamito P, Oliveira J, Brito R, Lopes P, Rodelo L, Pinto L, Morais D. Evaluation of cognitive functions through the Systemic Lisbon Battery: normative data. Methods Inf Med 2016; 55 (Suppl. 01) 93-97.
  • 28 Chaytor N, Schmitter-Edgecombe M. The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychological Review 2003; 13 (Suppl. 04) 181-197.
  • 29 Spooner D, Pachana N. Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology 2006; 21: 327-337.
  • 30 Parsons T. Neuropsychological Assessment Using Virtual Environments: Enhanced Assessment Technology for Improved Ecological Validity. In: Braham S, Jain LC. (eds). Advanced Computational Intelligence Paradigms in Healthcare. 06 271-289. Berlin Heidelberg: Springer-Verlag; 2011
  • 31 Stanev D, Moustakas K, Gliatis J, Koutsojannis C. ACL Reconstruction Decision Support Through Personalized Simulation of the Lachman Test and Custom Activities. Methods Inf Med 2016; 55 (Suppl. 01) 98-105.
  • 32 Weiss J, Gardiner J. Computational Modeling of Ligament Mechanics. Critical Reviews™ in Biomedical Engineering 2001; 29 (Suppl. 03) 303-371.
  • 33 Bei Y, Fregly BJ. Multibody dynamic simulation of knee contact mechanics. Medical Engineering & Physics 2004; 26 (Suppl. 09) 777-789.