Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

2 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan

3 Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore, Pakistan

4 Department of Mathematics, Comsats University Islamabad Lahore Campus

10.33945/SAMI/ECC.2020.6.3

Abstract

Topological index is a type of molecular descriptor calculated based on the molecular graph of a chemical compound. Topological indices are used for developing the quantitative structure activity relationships (QSARs) in which the biological activity or other properties of the molecules are correlated with their chemical structure. Eccentric connectivity indices are the well-known topological indices in this regards. In this research study, we computed some eccentric connectivity indices of the V-Phenylenic nanotube VPHX[p;q], these are our results.

Graphical Abstract

New results on eccentric connectivity indices of V-Phenylenic nanotube

Keywords

Main Subjects

[1] M. Randić, J. Amer. Chem. Soc., 1975, 97, 6609-6615.
[2] D.A. Klarner. Polyominoes, In: J.E. Goodman, J.O. Rourke, (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton. Chapter 12 (1997) 225-242.
[3] N. Trinajstić, Chemical Graph Theory. CRC Press, Boca Raton, FL. (1992).
[4] V. Sharma, R. Goswami, A.K. Mada, J. Chem. Inf. Comput. Sci., 1997, 37, 273-282
[5] S. Gupta, M. Singh, A.K. Madan, J. Math, Anal. Appl., 2002, 266, 259-268.
[6]  S. Ediz, J. Optoelectron. Adv. Mater. Rapid Commun., 2010, 4, 1847-1848.
[7]  S. Ediz, J. Optoelectron. Adv. Mater. Rapid Commun., 2011, 5, 1263-1264.
[8]  H. Dureja, A.K. Madan, Med. Chem. Res., 2007, 16, 331-341.
[9] T. Do slic, M. Saheli, Journal of Mathematical Nano Science., 2011, 1, 25-31.
[10] M.R. Farahani, Int J. Chem Model, 2014, 6, 17-23.
[11] De. Nilanjan, International Journal of Applied Mathematical Research, 2012, 1, 671-680.
[12] J. Sedlar, Math. Comput. Chem., 2012, 68, 325-342
[13] Z. Yarahmadi, Iranian Journal of Mathematical Chemistry., 2010, 1, 105-110.
[14] M.R. Farahani, Annals of West University of Timisoara-Mathematics and Computer Science., 2013, 51, 29–37.
[15] M.R. Farahani, World Appl. Sci. J., 2013, 21, 1260-1265.
[16] M.R. Farahani, Journal of Chemica Acta., 2, 2013, 26-31.
[17] M.R. Farahani, Journal of Applied Physical Science International, 2015, 4, 185-190.
[18] M.R. Farahani, W. Gao, International Journal of Applied Mathematics and Machine Learning, 2016, 4, 31-42.
[19] M.R. Farahani, J. Asadpour, M.R.R. Kanna, Asian Academic Research Journal of Multidisciplinary, 2016, 3, 23-29.
[20] M.R. Farahani, M.K. Jamil, M.R.R. Kanna, R. Pradeep Kumar, International Journal of Scientific & Engineering Research, 2016, 7, 1132-1135.
[21] M.K. Jamil, M.R. Farahani, M.R.R. Kanna, S.M. Hosamani, Journal of Chemical and Pharmaceutical Research, 2016, 8, 80-83.
[22] M.R. Farahani, M.R.R. Kanna, R. Pradeep Kumar, M.K. Jamil, International Journal of Pharmaceutical sciences and Research., 2017, 8, 201-206.
[23] M. Rezaei, A.Q. Baig, W. Sajjad, M.R. Farahani, International Journal of Pure and Applied Mathematics, 2016, 111, 467-477.
[24] W. Gao, M.R. Farahani, M.K. Jamil, Acta Chim. Slov., 2016, 63, 376-379.
[25] W. Gao, W. Wang, M.K. Jamil, M.R. Farahani, Journal of Chemistry, 2016, 1-7.
[26] W. Gao, W.F. Wang, M.K. Jamil, R. Farooq, M.R. Farahani, Bulg. Chem. Commun., 2016, 48, 543-549.
[27] M.K. Jamil, M.R. Farahani, M.R.R. Kanna, The Pharmaceutical and Chemical Journal, 2016, 3, 94-99.
[28] M.R. Farahani, Acta Chimica Slovenica, 2013, 60, 429-432.
[29] Y. Huo, J.B. Liu, A.Q. Baig, W. Sajjad, M. Rezaei, Z. Foruzanfar, M.R. Farahani, J. Comput. Theor Nanos., 2017, 14, 1832–1836.
[30] N.P. Rao, K.L. Lakshmi, Dig. J. Nanomater. Bios., 2010, 6, 81-87.
[31] V. Alamian, A. Bahrami, B. Edalatzadeh, Int. J. Mol. Sci., 2008, 9, 229-234.
[32] M. Alaeiyan, A. Bahrami, M.R. Farahani, Digest. J. Nanomater. Bios., 2011, 6, 143-147.
[33]  J. Asadpour, Adv. Mater.-Rapid Commun., 2011, 5, 769-772.
[34]  A. Bahrami, J. Yazdani, Digest. J. Nanomater. Bios., 2009, 4, 141-144.
[35]  M. Davoudi Mohfared, A. Bahrami, J. Yazdani, Digest. J. Nanomater. Bios., 2010, 5, 441-445.
[36] M.R. Farahani, Int. J. Chem Model., 2013, 5, 479-484.
[37] M.R. Farahani, Acta Chimica Slovenica., 2013, 60, 429-432.
[38] M.R. Farahani, Int. J. Theoretical Chemistry, 2013, 1, 01-09.
[39] M.R. Farahani, M.R. Rajesh Kanna, Journal of Chemical and Pharmaceutical Research, 2015, 7, 241-245.
[40] V. Kumar, A.K. Madan, J. Math. Chem., 2006, 39, 511–521.
[41] V. Kumar, A.K. Madan, J. Math. Chem., 2007, 42, 925–940.
[42] V. Lather, A.K. Madan, Croat. Chem. Acta., 2005, 78, 55–61.
[43] S. Sardana, A.K. Madan, J. Mol. Struct., (Theochem), 2003, 638, 41–49.
[44] S. Sardana, A.K. Madan, J. Mol. Model., 2002, 8, 258–265.
[45] H. Dureja, S. Gupta, A.K. Madan, J. Mol. Graph. Model, 2008, 26, 1020-1029.
[46] S. Gupta, M. Singh, A.K. Madan, J. Math. Anal. Appl., 2002, 275, 386-401.
[47] V. Kumar, S. Sardana, A.K. Madan, J. Mol. Model, 2004, 10, 399–407.
[48] S. Sardana, A.K. Madan, Math. Comput. Chem., 2001, 43, 85–98.
[49] H. Dureja, A.K. Madan, Int. J. Pharm., 2006, 323, 27–33.
[50] S. Gupta, M. Singh, A.K. Madan, J. Math. Anal. Appl., 2002, 266, 259–268.
[51] A. Ilic, I. Gutman, Math. Comput. Chem., to appear.
[52] N.P. Rao, K.L. Lakshmi, Digest Journal of Nanomaterials and Biostructures, 2010, 6, 81-87.