Modelling of the Discharge Response to Climate Change under RCP8.5 Scenario in the Alata River Basin (Mersin, SE Turkey)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basin Characteristics
2.2. HYPE Model and Input Data
2.3. Hydrological Model Calibration and Validation
2.4. Model Performance Evaluation
2.5. Future Climate Projection
2.6. The Significance Test
- The observations from both groups are independent of each other, and the responses are ordinal;
- Under the null hypothesis, H0, there is no difference in the distributions of both samples;
- Under the alternative hypothesis, H1, the distributions of the samples are significantly different, and the significance level is 0.05 (the threshold p-value).
3. Results
3.1. Model Performance
3.2. Best-Optimised Model Parameters
3.3. Effects of Future Climate and a Significance Test
4. Discussion
4.1. Discharge Calibration and Validation
4.2. Discharge Prediction under Future Climate Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heal, G. Nature and the Marketplace: Capturing the Value of Ecosystem Services; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Heal, G.M. Valuing Ecosystem Services. SSRN Electron. J. 1999, 2000b, 24–30. [Google Scholar] [CrossRef]
- Holzman, D.C. Accounting for Nature’s Benefits: The Dollar Value of Ecosystem Services. Environ. Heal. Perspect. 2012, 120, A152–A157. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S. Freshwater Resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Field, C.B., Barros, V.R., Dokke, D.J., Mach, K.J., et al., Eds.; Cambridge University Press: Cambridge, NY, USA, 2014; pp. 229–269. [Google Scholar]
- UNEP (United Nations Environment Programme). A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- UNEP/MAP (United Nations Environment Programme/Mediterranean Action Plan). Mediterranean Strategy for Sustainable Development 2016–2025; Plan Bleu, Regional Activity Centre: Valbonne, France, 2016. [Google Scholar]
- Mariani, L.; Parisi, S.G. Extreme Rainfalls in the Mediterranean Area. In Storminess and Environmental Change; Diodato, N., Bellocchi, G., Eds.; Springer: Dordrecht, Germany, 2014; pp. 17–37. [Google Scholar]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; Sánchez-Montoya, M.D.M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total. Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, NY, USA, 2013; pp. 1311–1393. [Google Scholar]
- Önol, B.; Bozkurt, D.; Turuncoglu, U.U.; Şen, Ö.L.; Dalfes, H.N.; Dalfes, N. Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Clim. Dyn. 2013, 42, 1949–1965. [Google Scholar] [CrossRef]
- OSİB (Orman ve Su İşleri Bakanlığı). İklim Değişikliğinin Su Kaynaklarına Etkisi Projesi, Proje Nihai Raporu, EK 19—Doğu Akdeniz Havzası. Orman ve Su İşleri Bakanlığı; Su Yönetimi Genel Müdürlüğü: Ankara, Turkey, 2016. (In Turkish) [Google Scholar]
- Woetzel, J.; Pinner, D.; Samandari, H.; Engel, H.; Krishnan, M.; Boland, B.; Powis, C. Climate Risk and Response: Physical Hazards and Socioeconomic Impacts. McKinsey Global Institute, 2000. Available online: https://www.mckinsey.com/business-functions/sustainability/our-insights/climate-risk-and-response-physical-hazards-and-socioeconomic-impacts (accessed on 5 February 2021).
- Ciscar, J.C.; Ibarreta, D.R.; Soria, A.R.; Feyen, L. Climate Impacts in Europe: Final Report of the JRC PESETA III; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Burak, S.; Dogan, E.; Gazioglu, C. Impact of urbanization and tourism on coastal environment. Ocean Coast. Manag. 2004, 47, 515–527. [Google Scholar] [CrossRef]
- Demirel, Z.; Güler, C. Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ. Earth Sci. 2005, 49, 477–487. [Google Scholar] [CrossRef]
- Güler, C.; Kurt, M.A.; Alpaslan, M.; Akbulut, C. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J. Hydrol. 2012, 2012, 435–451. [Google Scholar] [CrossRef]
- Güler, C.; Kurt, M.A.; Korkut, R.N. Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone (Mersin, Turkey) under conflicting land use practices. Ocean Coast. Manag. 2013, 71, 141–152. [Google Scholar] [CrossRef]
- Fargues, P. Emerging Demographic Patterns across the Mediterranean and Their Implications for Migration through 2030; Migration Policy Institute: Washington, DC, USA, 2008. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2014. [Google Scholar]
- Mpandeli, S.; Nhamo, L.; Moeletsi, M.; Masupha, T.; Magidi, J.; Tshikolomo, K.; Liphadzi, S.; Naidoo, D.; Mabhaudhi, T. Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data. Weather. Clim. Extremes 2019, 26, 100240. [Google Scholar] [CrossRef]
- Singh, V.P. Watershed Modeling. Chapter 1. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: High-lands Ranch, CO, USA, 1995; pp. 1–22. [Google Scholar]
- Borah, D.K.; Bera, M. Watershed-Scale Hydrologic and Nonpoint-Source Pollution Models: Review of Mathematical Bases. Trans. ASAE 2003, 46, 1553–1566. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Todini, E. Hydrological catchment modelling: Past, present and future. Hydrol. Earth Syst. Sci. 2007, 11, 468–482. [Google Scholar] [CrossRef] [Green Version]
- Vaze, J.; Jordan, P.; Beecham, R.; Frost, A.; Summerell, G. Guidelines for Rainfall-Runoff Modelling: Towards Best Practice Model Application. Available online: https://ewater.org.au/uploads/files/eWater-Guidelines-RRM-(v1_0-Interim-Dec-2011).pdf (accessed on 22 September 2017).
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Wellen, C.; Kamran-Disfani, A.-R.; Arhonditsis, G.B. Evaluation of the Current State of Distributed Watershed Nutrient Water Quality Modeling. Environ. Sci. Technol. 2015, 49, 3278–3290. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program FORTRAN: User’s Manual for Version 11. U.S. GA: EPA/600/R-97/080; National Exposure Research Laboratory: Athens, Greece, 1997; p. 755. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Wade, A.J.; Durand, P.; Beaujouan, V.; Wessel, W.W.; Raat, K.J.; Whitehead, P.G.; Butterfield, D.; Rankinen, K.; Lepisto, A. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 559–582. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.; Wechsung, F. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrol. Process. 2005, 19, 763–783. [Google Scholar] [CrossRef]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Andersson, L.; Rosberg, J.; Pers, B.C.; Olsson, J.; Arheimer, B. Estimating Catchment Nutrient Flow with the HBV-NP Model: Sensitivity to Input Data. Ambio 2005, 34, 521. [Google Scholar] [CrossRef] [PubMed]
- Strömqvist, J.; Arheimer, B.; Dahné, J.; Donnelly, C.; Lindström, G. Water and nutrient predictions in ungauged basins: Set-up and evaluation of a model at the national scale. Hydrol. Sci. J. 2012, 57, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Jomaa, S.; Rode, M. Modelling inorganic nitrogen leaching in nested mesoscale catchments in central Germany. Ecohydrology 2014, 7, 1345–1362. [Google Scholar] [CrossRef]
- Pechlivanidis, I.G.; Arheimer, B. Large-scale hydrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrol. Earth Syst. Sci. 2015, 19, 4559–4579. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, C.; Andersson, J.C.; Arheimer, B. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Hundecha, Y.; Arheimer, B.; Donnelly, C.; Pechlivanidis, I. A regional parameter estimation scheme for a pan-European multi-basin model. J. Hydrol. Reg. Stud. 2016, 6, 90–111. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, S.; Jiang, S.; Thraen, D.; Rode, M. Modelling the effect of different agricultural practices on stream nitrogen load in central Germany. Energy Sustain. Soc. 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Andersson, J.C.; Arheimer, B.; Traoré, F.; Gustafsson, D.; Ali, A. Process refinements improve a hydrological model concept applied to the Niger River basin. Hydrol. Process. 2017, 31, 4540–4554. [Google Scholar] [CrossRef] [Green Version]
- Veinbergs, A.; Lagzdins, A.; Jansons, V.; Abramenko, K.; Sudars, R. Discharge and Nitrogen Transfer Modelling in the Berze River: A HYPE Setup and Calibration. Environ. Clim. Technol. 2017, 19, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Bangash, R.F.; Passuello, A.; Hammond, M.; Schuhmacher, M. Water allocation assessment in low flow river under data scarce conditions: A study of hydrological simulation in Mediterranean basin. Sci. Total Environ. 2012, 440, 60–71. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; de Girolamo, A.M.; Barca, E.; Ielpo, P.; Rulli, M.C. Characterising the hydrological regime of an ungauged temporary river system: A case study. Environ. Sci. Pollut. Res. 2016, 24, 13950–13966. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- GDSHW (General Directorate of State Hydraulic Works) Türkiye Havza Numaraları ve Havzaları. Available online: http://www.dsi.gov.tr/docs/resmi-i-statistikler/1-1-t%C3%BCrkiye-havza-numaralar%C4%B1-ve-havzalar%C4%B1-2014.docx?sfvrsn=4 (accessed on 22 December 2017).
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- GDSHW (General Directorate of State Hydraulic Works) Gözlem İstasyonları Yönetim Sistemi. Available online: http://rasatlar.dsi.gov.tr/# (accessed on 12 December 2017).
- TSMS (Turkish State Meteorological Service) MEVBİS. Available online: https://mevbis.mgm.gov.tr/mevbis/ui/index.html (accessed on 25 May 2016).
- Şenol, M.; Şahin, Ş.; Duman, T.Y. Adana-Mersin Dolayının Jeoloji Etüd Raporu (Unpublished Report); Maden Tetkik ve Arama Enstitüsü: Ankara, Turkey, 1998. (In Turkish) [Google Scholar]
- Alan, İ.; Şahin, Ş.; Keskin, H.; Altun, İ.; Bakırhan, B.; Balcı, V.; Böke, N.; Saçlı, L.; Pehlivan, Ş.; Kop, A.; et al. Orta Torosların Jeodinamik Evrimi Ereğli (Konya)-Ulukışla (Niğde)-Karsantı (Adana)-Namrun (İçel) Yöresi (Unpublished Report); Maden Tetkik ve Arama Enstitüsü: Ankara, Turkey, 2007. (In Turkish) [Google Scholar]
- GDRS (General Directorate of Rural Services). Soil Characteristics Maps of Scale 1/25.000; GDRS: Ankara, Turkey, 2001. [Google Scholar]
- Engör, A.M.C.; Yilmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Tekeli, O.; Aksay, A.; Ürgün, B.M.; Işık, A. Geology of the Aladağ Mountains. In Proceedings of the International Symposium on the Geology of the Taurus Belt, Maden Tetkik ve Arama Enstitüsü, Ankara, Turkey, 26–29 September 1983; pp. 143–158. [Google Scholar]
- EEA (European Environment Agency). CORINE Land Cover 2012 (CLC2012) Technical Guidelines. EEA Technical Report No. 17. Copenhagen. Available online: http://www.eea.europa.eu/publications/technical_report_2007_17 (accessed on 17 April 2018).
- EEA (European Environment Agency). Copernicus Land Service—Pan-European Component: CORINE Land Cover. European Environment Agency: Copenhagen. Available online: https://land.copernicus.eu/user-corner/publications/clc-flyer/view (accessed on 17 April 2018).
- TSI (Turkish Statistical Institute). The Results of Address Based Population Registration System (ABPRS). Available online: https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr (accessed on 12 January 2018).
- Bergström, S. The HBV Model. In Computer Models of Watershed Hydrology; Singh, V., Ed.; Water Resources Publications: Littleton, CO, USA, 1995. [Google Scholar]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Arheimer, B.; Brandt, M. Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio 1998, 27, 471–480. [Google Scholar]
- ESRI (Environmental Systems Research Institute). ArcGIS, Version 10. ESRI 380; ESRI: Redlands, CA, USA, 2010. [Google Scholar]
- ESRI (Environmental Systems Research Institute). Arc Hydro Tools—Tutorial, Version 2.0; ESRI: Redlands, CA, USA, 2011. [Google Scholar]
- Band, L.E. Topographic Partition of Watersheds with Digital Elevation Models. Water Resour. Res. 1986, 22, 15–24. [Google Scholar] [CrossRef]
- Flügel, W.-A. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Process. 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Arheimer, B.; Dahné, J.; Donnelly, C. Climate Change Impact on Riverine Nutrient Load and Land-Based Remedial Measures of the Baltic Sea Action Plan. Ambio 2012, 41, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Zhang, Q.; Werner, A.; Wellen, C.; Jomaa, S.; Zhu, Q.; Büttner, O.; Meon, G.; Rode, M. Effects of stream nitrate data frequency on watershed model performance and prediction uncertainty. J. Hydrol. 2019, 569, 22–36. [Google Scholar] [CrossRef]
- Jiang, S.; Jomaa, S.; Büttner, O.; Meon, G.; Rode, M. Multi-site identification of a distributed hydrological nitrogen model using Bayesian uncertainty analysis. J. Hydrol. 2015, 529, 940–950. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Cao, W.; Bowden, W.B.; Davie, T.; Fenemor, A. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol. Process. 2006, 20, 1057–1073. [Google Scholar] [CrossRef]
- Blasone, R.-S.; Madsen, H.; Rosbjerg, D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J. Hydrol. 2008, 353, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Z.; Sun, G.; Strauss, P.; Guo, J.; Tang, Y.; Yao, A. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol. Earth Syst. Sci. 2012, 16, 4621–4632. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Collins, M.R.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, J.W.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Eds.; Cambridge University Press: Cambridge, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Gutowski, W.J. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 2015, 40, 467–490. [Google Scholar] [CrossRef]
- Danish Meteorological Institute (DMI). The HIRHAM Regional Climate Model Version 5(β); Technical Report 06-17; Danish Meteorological Institute (DMI): Copenhagen, Denmark, 2007. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Yang, X.; Jomaa, S.; Zink, M.; Fleckenstein, J.H.; Borchardt, D.; Rode, M. A New Fully Distributed Model of Nitrate Transport and Removal at Catchment Scale. Water Resour. Res. 2018, 54, 5856–5877. [Google Scholar] [CrossRef]
- Bennett, J.C.; Robertson, D.E.; Ward, P.G.D.; Hapuarachchi, H.A.P.; Wang, Q.J. Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments. Environ. Model. Softw. 2016, 76, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Dye, D.G. Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol. Process. 2002, 16, 3065–3077. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A Hydrologic/Water Quality Model Applicati1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1223–1236. [Google Scholar] [CrossRef]
- Bozkurt, D.; Sen, O.L. Climate change impacts in the Euphrates–Tigris Basin based on different model and scenario simulations. J. Hydrol. 2013, 480, 149–161. [Google Scholar] [CrossRef]
- Bozkurt, D.; Sen, O.; Hagemann, S. Projected river discharge in the Euphrates–Tigris Basin from a hydrological discharge model forced with RCM and GCM outputs. Clim. Res. 2015, 62, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Kopytkovskiy, M.; Geza, M.; McCray, J. Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. J. Hydrol. Reg. Stud. 2015, 3, 473–493. [Google Scholar] [CrossRef] [Green Version]
- Yucel, I.; Güventürk, A.; Sen, O.L. Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. Int. J. Clim. 2014, 35, 215–228. [Google Scholar] [CrossRef]
- Yılmaz, Y.A.; Aalstad, K.; Sen, O.L. Multiple Remotely Sensed Lines of Evidence for a Depleting Seasonal Snowpack in the Near East. Remote. Sens. 2019, 11, 483. [Google Scholar] [CrossRef] [Green Version]
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Yair, Y.; Ganot, M.; Baharad, A.; Isaschari, D. Atmospheric factors governing winter thunderstorms in the coastal region of the eastern Mediterranean. Theor. Appl. Clim. 2008, 95, 301–310. [Google Scholar] [CrossRef]
- Belachsen, I.; Marra, F.; Peleg, N.; Morin, E. Convective rainfall in a dry climate: Relations with synoptic systems and flash-flood generation in the Dead Sea region. Hydrol. Earth Syst. Sci. 2017, 21, 5165–5180. [Google Scholar] [CrossRef] [Green Version]
- Khodayar, S.; Hoerner, J. An idealized model sensitivity study on Dead Sea desertification with a focus on the impact on convection. Atmos. Chem. Phys. 2020, 12011–12031. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Unit | Value | Characteristics | Unit | Value |
---|---|---|---|---|---|
Basin area (total) | km2 | 449.19 | Elevation range | ||
Total stream length | km | 811.57 | 0–100 m | % area | 0.59 |
Drainage density | km/km2 | 1.80 | 100–250 m | % area | 1.14 |
Strahler’s stream order | – | 5 | 250–500 m | % area | 4.41 |
Hydrology (2000–2013) | 500–1000 m | % area | 11.01 | ||
Discharge at outlet (daily mean) | m3/s | 2.99 | 1000–1500 m | % area | 17.57 |
Precipitation (total mean) a | mm/y | 610.7 | 1500–2000 m | % area | 37.06 |
Temperature (mean) a | °C | 12.1 | 2000–2418 m | % area | 28.22 |
Lithology | Slope range | ||||
Unconsolidated sediments | % area | 1.74 | 0–5° | % area | 19.28 |
Sedimentary rocks | % area | 11.28 | 5–10° | % area | 23.01 |
Carbonate rocks | % area | 62.61 | 10–20° | % area | 33.48 |
Ophiolitic rocks | % area | 24.37 | 20–30° | % area | 8.03 |
Soil type | 30–40° | % area | 12.67 | ||
Bare rock and rubble | % area | 4.08 | >40° | % area | 3.53 |
Brown forest | % area | 62.37 | Land use (in 2012) | ||
Colluvium | % area | 1.32 | Agriculture | % area | 16.21 |
Non-calcic brown forest | % area | 28.86 | Forest | % area | 11.43 |
Red mediterranean | % area | 0.76 | Natural grassland/scrub | % area | 36.25 |
Red-brown mediterranean | % area | 1.54 | Bare rock/open space | % area | 35.78 |
Alluvium | % area | 0.05 | Settlement | % area | 0.31 |
Built-up area | % area | 1.02 | Mining | % area | 0.02 |
Data Type | Data Description | Resolution | Period/Date | Source |
---|---|---|---|---|
Meteorological | Air temperature (°C) (3 climate stations) | Daily | 2002–2013 | Turkish State Meteorological Service [52] |
Precipitation (mm) (3 climate stations) | Daily | 2002–2013 | Turkish State Meteorological Service [52] | |
Hydrological | Discharge (m3/s) (2 gauging stations) | Daily | 2000–2013 (outlet) 2002–2013 (internal) | General Directorate of State Hydraulic Works [51] |
Geographical | Digital Elevation Model (DEM) | 15 m | 1989 and 1990 | General Directorate of Mapping: Karaman N32 (d2–d4) and Silifke O32 (a1–a4, c1, c4, d2) 1:25,000-scale topographic maps with 10-m contour interval |
Geology | 1:25,000 | 1998 and 2007 | [53,54] | |
Soil type | 1:25,000 | 2001 | General Directorate of Rural Services [55] | |
Land use | 100 m | 2012 | CORINE Land Cover 2012 (Release 18.5) [58,59] |
Parameter a | Physical Meaning and Unit | Dependence | Optimised Value | |
---|---|---|---|---|
Outlet | Internal | |||
ttmp | Threshold temperature for snowmelt and evaporation (°C) | Land use | ||
Agriculture | 0.770 | 0.880 | ||
Natural grassland/scrub | 0.219 | 0.159 | ||
cevp | Potential evaporation rate (mm/d/°C) | Land use | ||
Agriculture | 0.828 | 0.918 | ||
Natural grassland/scrub | 0.999 | 1.229 | ||
cevpph | Phase of the sinus function that corrects potential evaporation (d) | General | 179.5 | 158.5 |
srrate | Rate of surface runoff (–) | Soil type | ||
Brown forest soil | 0.0067 | 0.0047 | ||
Non-calcic brown forest soil | 0.0098 | 0.0058 | ||
cmlt | Melting parameter for snow (mm/d/°C) | Land use | ||
Agriculture | 2.013 | 2.173 | ||
Natural grassland/scrub | 1.902 | 1.785 | ||
rrcs2 | Recession coefficient for the lowermost soil layer (–) | Soil type | ||
Colluvial soil | 0.00958 | 0.00158 | ||
Brown forest soil | 0.00602 | 0.00402 | ||
damp | Fraction of delay time in river through damping (–) | General | 0.683 | 0.983 |
macro1 | Rate of the macropore flow (macrate) (–) | Soil type | ||
Brown forest soil | 7.518 | 9.519 | ||
Non-calcic brown forest soil | 5.545 | 7.543 | ||
macro2 | Threshold for the macropore flow (mactresin) (mm) | Soil type | ||
Brown forest soil | 4.814 | 4.914 | ||
Non-calcic brown forest soil | 0.815 | 6.059 | ||
macro3 | Threshold of the soil moisture for macropore flow and surface runoff (mactressm) (–) | Soil type | ||
Brown forest soil | 0.461 | 0.361 | ||
Non-calcic brown forest soil | 0.815 | 0.855 | ||
wcfc | Field capacity as a fraction, same for all soil layers (–) | Soil type | ||
Non-calcic brown forest soil | 0.959 | 0.859 | ||
wcwp | Wilting point as a fraction (–) | Soil type | ||
Brown forest soil | 0.011 | 0.031 | ||
wcep | Effective porosity as a fraction, same for all soil layers | Soil type | ||
Brown forest soil | 0.000375 | 0.000225 |
Discharge | Precipitation | Temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
Months | Beginning 2021–2040 | Middle 2046–2065 | End 2081–2100 | Beginning 2021–2040 | Middle 2046–2065 | End 2081–2100 | Beginning 2021–2040 | Middle 2046–2065 | End 2081–2100 |
September | 0.88 | 0.15 | <0.05 | 0.65 | 0.81 | 0.47 | <0.05 | <0.05 | <0.05 |
October | 0.98 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
November | 0.32 | 0.06 | <0.05 | <0.05 | 0.06 | <0.05 | 0.06 | <0.05 | <0.05 |
December | 1.00 | 0.55 | <0.05 | 0.46 | 0.55 | <0.05 | 0.48 | 0.18 | <0.05 |
January | 0.64 | 0.91 | 0.09 | 0.30 | 0.18 | 0.41 | 0.72 | <0.05 | <0.05 |
February | 0.82 | 0.24 | <0.05 | <0.05 | 0.12 | <0.05 | <0.05 | <0.05 | <0.05 |
March | 0.58 | 0.45 | <0.05 | 0.06 | 0.13 | <0.05 | <0.05 | <0.05 | <0.05 |
April | 0.91 | 0.27 | <0.05 | 0.83 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
May | 1.00 | 0.31 | <0.05 | 0.62 | 0.13 | 0.06 | <0.05 | <0.05 | <0.05 |
June | 0.98 | 0.29 | <0.05 | 0.30 | 0.20 | 0.10 | <0.05 | <0.05 | <0.05 |
July | 0.98 | 0.31 | <0.05 | <0.05 | 0.13 | 0.15 | <0.05 | <0.05 | <0.05 |
August | 0.85 | 0.29 | <0.05 | 0.22 | 0.09 | 0.31 | <0.05 | <0.05 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, Ü.; Güler, C.; Önol, B.; Rode, M.; Jomaa, S. Modelling of the Discharge Response to Climate Change under RCP8.5 Scenario in the Alata River Basin (Mersin, SE Turkey). Water 2021, 13, 483. https://doi.org/10.3390/w13040483
Yıldırım Ü, Güler C, Önol B, Rode M, Jomaa S. Modelling of the Discharge Response to Climate Change under RCP8.5 Scenario in the Alata River Basin (Mersin, SE Turkey). Water. 2021; 13(4):483. https://doi.org/10.3390/w13040483
Chicago/Turabian StyleYıldırım, Ümit, Cüneyt Güler, Barış Önol, Michael Rode, and Seifeddine Jomaa. 2021. "Modelling of the Discharge Response to Climate Change under RCP8.5 Scenario in the Alata River Basin (Mersin, SE Turkey)" Water 13, no. 4: 483. https://doi.org/10.3390/w13040483
APA StyleYıldırım, Ü., Güler, C., Önol, B., Rode, M., & Jomaa, S. (2021). Modelling of the Discharge Response to Climate Change under RCP8.5 Scenario in the Alata River Basin (Mersin, SE Turkey). Water, 13(4), 483. https://doi.org/10.3390/w13040483