A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Plots
2.2. Experimental Design
2.3. Experiment Data Collections and Processing
2.4. Statistical Analysis
3. Results
3.1. SSR Migration Analysis
3.2. Sediment Migration Analysis
3.3. Nutrient Migration Analysis
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UCM | U-trough collection method |
SPM | Seepage plate collection method |
SR | Surface runoff |
SSR | Subsurface runoff |
SP | Sampling probability |
TP | Total phosphorus |
TN | Total nitrogen |
References
- Yang, R.; Tong, J.; Hu, B.X.; Li, J.; Wei, W. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model. Environ. Sci. Pollut. Res. 2017, 24, 15089–15106. [Google Scholar] [CrossRef]
- Cameron, K.; Di, H.; Moir, J. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, T.; Kuang, F.; Luo, Z.; Tang, J.; Xu, T. Measurements of Nitrate Leaching from a Hillslope Cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 2009, 73, 1419–1426. [Google Scholar] [CrossRef]
- Freeze, R.A. Reply [to “Comments on ‘Role of subsurface flow in generating surface runoff: 1, Base flow contributions to channel flow’ by R. Allan Freeze”]. Water Resour. Res. 1973, 9, 491. [Google Scholar] [CrossRef]
- Li, J.; Guo, M.; Guo, M.; Kang, H.; Wang, Z.; Huang, J.; Sun, B.; Wang, K.; Zhang, G.; Bai, Y. Effects of soil texture and gravel content on the infiltration and soil loss of spoil heaps under simulated rainfall. J. Soils Sediments 2020, 20, 3896–3908. [Google Scholar] [CrossRef]
- Mohammadzadeh-Habili, J.; Heidarpour, M.; Khalili, D. Effect of Aggregate Size and Porosity of Clay Soils on the Hydraulic Parameters of the Green-Ampt Infiltration Model. J. Hydrol. Eng. 2018, 23, 06018001. [Google Scholar] [CrossRef]
- Cheik, S.; Bottinelli, N.; Sukumar, R.; Jouquet, P. Fungus-growing termite foraging activity increases water infiltration but only slightly and temporally impacts soil physical properties in southern Indian woodlands. Eur. J. Soil Biol. 2018, 89, 20–24. [Google Scholar] [CrossRef]
- Li, B.; Gao, J.; Wang, X.; Ma, L.; Cui, Q.; Vest, M. Effects of biological soil crusts on water infiltration and evaporation Yanchi Ningxia, Maowusu Desert, China. Int. J. Sediment Res. 2016, 31, 311–323. [Google Scholar] [CrossRef]
- Xie, C.; Cai, S.; Yu, B.; Yan, L.; Liang, A.; Che, S. The effects of tree root density on water infiltration in urban soil based on a Ground Penetrating Radar in Shanghai, China. Urban For. Urban Green. 2020, 50, 126648. [Google Scholar] [CrossRef]
- Leung, A.K.; Boldrin, D.; Liang, T.; Wu, Z.Y.; Kamchoom, V.; Bengough, A.G. Plant age effects on soil infiltration rate during early plant establishment. Géotechnique 2017, 68, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Huang, J.; Wu, P.; Zhao, X. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 2013, 104, 93–102. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Wu, F.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Liang, X.; Wang, J.; Wu, F. Soil Surface Roughness Effects on Infiltration Process of a Cultivated Slopes on the Loess Plateau of China. Water Resour. Manag. 2013, 27, 4759–4771. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, Y.; Park, H.; Kim, J. Effects of rainfall infiltration and hysteresis on the settlement of shallow foundations in unsaturated soil. Environ. Earth Sci. 2018, 77, 494. [Google Scholar] [CrossRef]
- Bashir, R.; Sharma, J.; Stefaniak, H. Effect of hysteresis of soil-water characteristic curves on infiltration under different climatic conditions. Can. Geotech. J. 2016, 53, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kugisaki, Y. Effect of macropores on soil freezing and thawing with infiltration. Hydrol. Process. 2017, 31, 270–278. [Google Scholar] [CrossRef]
- Litt, G.F.; Ogden, F.L.; Mojica, A.; Hendrickx, J.M.H.; Kempema, E.W.; Gardner, C.B.; Bretfeld, M.; Regina, J.A.; Harrison, J.B.J.; Cheng, Y.; et al. Land cover effects on soil infiltration capacity measured using plot scale rainfall simulation in steep tropical lowlands of Central Panama. Hydrol. Process. 2020, 34, 878–897. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez-Gutiérrez, J.D.; Osborne, S.L.; Nleya, T.; Guzman, J.; Rohila, J.S. Cover Crops and Returning Residue Impact on Soil Organic Carbon, Bulk Density, Penetration Resistance, Water Retention, Infiltration, and Soybean Yield. Agron. J. 2019, 111, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Negev, I.; Shechter, T.; Shtrasler, L.; Rozenbach, H.; Livne, A. The Effect of Soil Tillage Equipment on the Recharge Capacity of Infiltration Ponds. Water 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- He, X.; Zheng, Z.; Li, T.; He, S. Effect of Slope Gradient on Phosphorus Loss from a Sloping Land of Purple Soil under Simulated Rainfall. Pol. J. Environ. Stud. 2020, 29, 1637–1647. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, D.; Ni, J.; Zeng, X. Optimizing phosphate fertilizer application to reduce nutrient loss in a mustard (Brassica juncea var. tumida)-maize (Zea mays L.) rotation system in Three Gorges Reservoir area. Soil Tillage Res. 2019, 190, 78–85. [Google Scholar] [CrossRef]
- Bosch, D.D.; Truman, C.C.; Potter, T.L.; West, L.T.; Strickland, T.C.; Hubbard, R.K. Tillage and slope position impact on field-scale hydrologic processes in the South Atlantic Coastal Plain. Agric. Water Manag. 2012, 111, 40–52. [Google Scholar] [CrossRef]
- Bosch, D.D.; Potter, T.L.; Strickland, T.C.; Hubbard, R.K. Dissolved Nitrogen, Chloride, and Potassium Loss from Fields in Conventional and Conservation Tillage. Trans. ASABE 2015, 58, 1559–1571. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Qi, Z.; Zhang, T.-Q.; Tan, C.S.; Ma, L. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P. J. Environ. Qual. 2019, 48, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhattarai, R.; Negm, L.M.; Youssef, M.A.; Pittelkow, C.M. Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois. Agric. Water Manag. 2020, 240, 106322. [Google Scholar] [CrossRef]
- Zajíček, A.; Fučík, P.; Kaplická, M.; Liška, M.; Maxová, J.; Dobiáš, J. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions—The role of runoff components. Water Sci. Technol. 2018, 77, 1879–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manninen, N.; Soinne, H.; Lemola, R.; Hoikkala, L.; Turtola, E. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Sci. Total. Environ. 2018, 618, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Qi, Z.; Lu, C.; Tan, C.S.; Zhang, T.; Prasher, S.O. Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario. Agric. Water Manag. 2020, 237, 106179. [Google Scholar] [CrossRef]
- Pisani, O.; Liebert, D.; Bosch, D.; Coffin, A.; Endale, D.; Potter, T.; Strickland, T. Element losses from fields in conventional and conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 2020, 75, 376–386. [Google Scholar] [CrossRef]
- Guo, T.; Gitau, M.; Merwade, V.; Arnold, J.; Srinivasan, R.; Hirschi, M.; Engel, B. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 2018, 22, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Bjerkholt, J.T.; Kværner, J.; Jenssen, P.D.; Briseid, T. Mitigating particle and nutrient losses via subsurface agricultural drainage using lightweight aggregates. Agric. Water Manag. 2019, 213, 1004–1015. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, S.; Xu, D.; Yuan, H.; Chen, H. Field and numerical experiment of an improved subsurface drainage system in Huaibei plain. Agric. Water Manag. 2017, 194, 24–32. [Google Scholar] [CrossRef]
- Huang, R.; Gao, X.; Wang, F.; Xu, G.; Long, Y.; Wang, C.; Wang, Z.; Gao, M. Effects of biochar incorporation and fertilizations on nitrogen and phosphorus losses through surface and subsurface flows in a sloping farmland of Entisol. Agric. Ecosyst. Environ. 2020, 300, 106988. [Google Scholar] [CrossRef]
- Deng, L.; Sun, T.; Fei, K.; Zhang, L.; Fan, X.; Wu, Y.; Ni, L. Effects of erosion degree, rainfall intensity and slope gradient on runoff and sediment yield for the bare soils from the weathered granite slopes of SE China. Geomorphology 2020, 352, 106997. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Zhang, L.P.; Sun, T.-Y.; Zhang, L.-P.; Fan, X.-J.; Ni, L. Characteristics of runoff processes and nitrogen loss via surface flow and interflow from weathered granite slopes of Southeast China. J. Mt. Sci. 2019, 16, 1048–1064. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Zhang, L.P.; Sun, T.-Y.; Zhang, L.-P.; Fan, X.-J.; Ni, L. Phosphorus Loss through Overland Flow and Interflow from Bare Weathered Granite Slopes in Southeast China. Sustainability 2019, 11, 4644. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Bo, Z.; Fuhong, K. Reducing interflow nitrogen loss from hillslope cropland in a purple soil hilly region in southwestern China. Nutr. Cycl. Agroecosystems 2012, 93, 285–295. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, B. Nitrate loss via overland flow and interflow from a sloped farmland in the hilly area of purple soil, China. Nutr. Cycl. Agroecosystems 2011, 90, 309–319. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Wang, Y.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Yu, H.; Huang, H.; Liu, T.; et al. Characteristics of nitrogen loss in sloping farmland with purple soil in southwestern China during maize (Zea mays L.) growth stages. Catena 2019, 182, 104169. [Google Scholar] [CrossRef]
- Hua, K.; Zhu, B. Phosphorus loss through surface runoff and leaching in response to the long-term application of different organic amendments on sloping croplands. J. Soils Sediments 2020, 20, 3459–3471. [Google Scholar] [CrossRef]
- Mazur, A. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water 2018, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, Z.; Zuo, J.; Wang, L.; Nie, X. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China. Eurasian Soil Sci. 2017, 50, 1506–1514. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhou, Z.; Liu, Y.; Zhu, Q. Uncertainty analysis and ensemble bias-correction method for predicting nitrate leaching in tea garden soils. Agric. Water Manag. 2020, 237, 106182. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Jing, L.; Ni, L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2015, 148, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Šimůnek, J.; Jing, L.; Zhang, Z.; Ni, L. Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2014, 142, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Biernat, L.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ. 2020, 298, 106964. [Google Scholar] [CrossRef]
- Izydorczyk, K.; Michalska-Hejduk, D.; Jarosiewicz, P.; Bydałek, F.; Frątczak, W. Extensive grasslands as an effective measure for nitrate and phosphate reduction from highly polluted subsurface flow—Case studies from Central Poland. Agric. Water Manag. 2018, 203, 240–250. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Brings, C.; Lassu, T.; Iserloh, T.; Senciales, J.M.; Martínez-Murillo, J.F.; Sinoga, J.D.R.; Seeger, M.; Ries, J.B. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 2015, 6, 823–837. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, A.; Bienes, R.; Sastre, B.; Novara, A.; Gristina, L.; Cerdà, A. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 2017, 236, 256–267. [Google Scholar] [CrossRef]
- Pisani, O.; Strickland, T.C.; Hubbard, R.; Bosch, D.; Coffin, A.W.; Endale, D.; Potter, T.L. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 2017, 72, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xie, D.; Ni, J.; Zeng, X. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 2020, 300, 107003. [Google Scholar] [CrossRef]
- Hangen, E.; Gerke, H.; Schaaf, W.; Hüttl, R. Assessment of preferential flow processes in a forest-reclaimed lignitic mine soil by multicell sampling of drainage water and three tracers. J. Hydrol. 2005, 303, 16–37. [Google Scholar] [CrossRef]
- Zhong, S.; Han, Z.; Du, J.; Ci, E.; Ni, J.; Xie, D.; Wei, C. Relationships between the lithology of purple rocks and the pedogenesis of purple soils in the Sichuan Basin, China. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, F.; Linyao, D.; Jigen, L.; Bei, S.; Honghu, L.; Jiesheng, H.; Hao, L. Equations for predicting interrill erosion on steep slopes in the Three Gorges Reservoir, China. J. Hydrol. Hydromech. 2020, 68, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.-J.; He, X.-B.; Walling, D.; Zhang, X.-B.; Flanagan, D.; Qi, Y.-Q. Assessing Soil Erosion Rates on Manually-Tilled Hillslopes in the Sichuan Hilly Basin Using 137Cs and 210Pbex Measurements. Pedosphere 2007, 17, 273–283. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Wang, Y.; Liu, T. Assessing the contribution of the sediment content and hydraulics parameters to the soil detachment rate using a flume scouring experiment. Catena 2019, 176, 315–323. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.; Li, T.; He, S. The changing dynamics of rill erosion on sloping farmland during the different growth stages of a maize crop. Hydrol. Process. 2019, 33, 76–85. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Qin, F.; Zheng, Z.; Li, T. Changes of soil microrelief and its effect on soil erosion under different rainfall patterns in a laboratory experiment. Catena 2018, 162, 203–215. [Google Scholar] [CrossRef]
- Zuo, F.-L.; Li, X.-Y.; Yang, X.-F.; Wang, Y.; Ma, Y.-J.; Huang, Y.-H.; Wei, C.-F. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. J. Soils Sediments 2019, 20, 272–283. [Google Scholar] [CrossRef]
- Bouraima, A.-K.; He, B.; Tian, T. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region. Environ. Sci. Pollut. Res. 2016, 23, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Wang, C.L.; Dai, H.L. Soil Agrochemical Analysis and Environmental Monitoring; Li, Y., Ed.; China Land Press: Beijing, China, 2008; pp. 18–188. (In Chinese) [Google Scholar]
- Tsai, T.-L.; Jang, W.-S. Deformation effects of porosity variation on soil consolidation caused by groundwater table decline. Environ. Earth Sci. 2013, 72, 829–838. [Google Scholar] [CrossRef]
- Zhu, J. Impact of fractal characteristics on evaporation and infiltration in unsaturated heterogeneous soils. Hydrol. Sci. J. 2020, 65, 1872–1878. [Google Scholar] [CrossRef]
- Steingruber, S.M.; Reinhardt, M.; Wehrli, B. Nutrient transfer from soil to surface waters: Differences between nitrate and phosphate. Aquat. Sci. 2004, 66, 117–122. [Google Scholar] [CrossRef]
- Peng, X.; Shi, D.; Jiang, D.; Wang, S.; Li, Y. Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China. Catena 2014, 123, 215–224. [Google Scholar] [CrossRef]
- Makowski, V.; Julich, S.; Feger, K.-H.; Julich, D. Soil Phosphorus Translocation via Preferential Flow Pathways: A Comparison of Two Sites With Different Phosphorus Stocks. Front. For. Glob. Chang. 2020, 3, 48. [Google Scholar] [CrossRef]
Items | Soil Layer | UCM | SPM | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
SP (%) | L1 | 100 Aa | 0 | 83.55 Aa | 3.55 |
L2 | 95.00 Aa | 5.00 | 64.60 Bb | 9.60 | |
L3 | 95.00 Aa | 5.00 | 62.99 Bb | 7.99 | |
SSR (mm) | L0 | 944.9 Aa | 156.2 | 957.6 Aa | 155.7 |
L1 | 403.4 Bb | 14.0 | 471.0 Ab | 11.0 | |
L2 | 271.9 Bc | 10.2 | 304.0 Ac | 15.7 | |
L3 | 237.4 Ac | 9.7 | 259.2 Ac | 9.7 | |
Sediment (t/km2) | L1 | 49.562 Aa | 4.106 | 48.708 Aa | 3.751 |
L2 | 12.475 Ab | 0.203 | 13.177 Ab | 1.473 | |
L3 | 6.630 Ac | 0.347 | 5.730 Ac | 0.156 | |
TN (t/km2) | L1 | 19.113 Aa | 2.636 | 22.342 Aa | 3.401 |
L2 | 13.795 Ab | 1.175 | 13.883 Ab | 0.763 | |
L3 | 11.237 Ab | 0.712 | 10.488 Ab | 0.223 | |
TP (t/km2) | L1 | 0.291 Aa | 0.011 | 0.286 Aa | 0.024 |
L2 | 0.081 Ab | 0.007 | 0.088 Ab | 0.007 | |
L3 | 0.053 Ab | 0.002 | 0.056 Ab | 0.003 |
UCM | SPM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SSR | S | TN | TP | SSR | S | TN | TP | ||||
SSR | Pearson CC. | 1 | 0.982 | 0.97 | 1.000 ** | SSR | Pearson CC. | 1 | 0.994 * | 0.997 * | 0.997 * |
Sig.(1-tailed) | 0.061 | 0.078 | 0.009 | Sig.(1-tailed) | 0.035 | 0.025 | 0.023 | ||||
Cases | 3 | 3 | 3 | 3 | Cases | 3 | 3 | 3 | 3 | ||
S | Pearson CC. | 0.982 | 1 | 0.999 * | 0.987 | S | Pearson CC. | 0.994 * | 1 | 1.000 ** | 0.983 |
Sig.(1-tailed) | 0.061 | 0.017 | 0.052 | Sig.(1-tailed) | 0.035 | 0.009 | 0.058 | ||||
Cases | 3 | 3 | 3 | 3 | Cases | 3 | 3 | 3 | 3 | ||
TN | Pearson CC. | 0.970 | 0.999 * | 1 | 0.977 | TN | Pearson CC. | 0.997 * | 1.000 ** | 1 | 0.988 * |
Sig.(1-tailed) | 0.078 | 0.017 | 0.069 | Sig.(1-tailed) | 0.025 | 0.009 | 0.049 | ||||
Cases | 3 | 3 | 3 | 3 | Cases | 3 | 3 | 3 | 3 | ||
TP | Pearson CC. | 1.000 ** | 0.987 | 0.977 | 1 | TP | Pearson CC. | 0.997 * | 0.983 | 0.988 * | 1 |
Sig.(1-tailed) | 0.009 | 0.052 | 0.069 | Sig.(1-tailed) | 0.023 | 0.058 | 0.049 | ||||
Cases | 3 | 3 | 3 | 3 | Cases | 3 | 3 | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ni, C.; Wang, S.; Xie, D.; Ni, J. A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall. Sustainability 2021, 13, 2050. https://doi.org/10.3390/su13042050
Wang Y, Ni C, Wang S, Xie D, Ni J. A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall. Sustainability. 2021; 13(4):2050. https://doi.org/10.3390/su13042050
Chicago/Turabian StyleWang, Yi, Chengsheng Ni, Sheng Wang, Deti Xie, and Jiupai Ni. 2021. "A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall" Sustainability 13, no. 4: 2050. https://doi.org/10.3390/su13042050
APA StyleWang, Y., Ni, C., Wang, S., Xie, D., & Ni, J. (2021). A Reliable U-trough Runoff Collection Method for Quantifying the Migration Loads of Nutrients at Different Soil Layers under Natural Rainfall. Sustainability, 13(4), 2050. https://doi.org/10.3390/su13042050