Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland)
Abstract
:1. Introduction
2. Data and Methods
2.1. Research Area
- (1)
- The upper Vistula basin from the source to the mouth of the San. Within this part, a section of the Vistula known as the Mała Wisła (Little Vistula) splits off from the sources and runs to the mouth of the Przemsza River. In this section the river has the character of a mountain river, and in the subsequent part up to the confluence with the San River it takes on an upland character,
- (2)
- The middle Vistula basin from the mouth of the San to the mouth of the Narew. This constitutes the largest area of the Vistula River basin,
- (3)
- The lower Vistula River basin from the mouth of the Narew to the mouth to the Baltic Sea.
2.2. Data
2.3. Statistical Data Homogeneity
2.4. Detecting Trends
- xj and xk—values of the variable in particular years j and k, where j > k,
- n—series length (number of years).
2.5. Annual and Seasonal Variability
- δ—standard deviation
- —monthly average value in a given year (precipitation, outflow) or month
- —average monthly value over several years for individual years or months
- n—number of years in a multi-annual period.
3. Results
3.1. Precipitation and Air Temperature in the Vistula Basin in 1951–2015 and Their Annual Variability
Annual Trends in Precipitation and Air Temperature
3.2. Outflows in the Years 1951–2015 and Their Volatility
3.2.1. Analysis of Annual Outflow Trends
3.2.2. Variability of Precipitation and Air Temperature over the Year
3.2.3. Analysis of Seasonal Outflows and Their Volatility
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Chattopadhyay, S.; Edwards, D.R. Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate 2016, 4, 10. [Google Scholar] [CrossRef]
- Xu, F.; Jia, Y.; Niu, C.; Liu, J.; Hao, C. Changes in annual, seasonal and monthly climate and its impacts on runoff in the Hutuo River Basin, China. Water 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Purcz, P.; Blištan, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in precipitation and temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Grinevskiy, S.O.; Pozdniakov, S.P. A retrospective analysis of the impact of climate change on groundwater resources. Mosc. Univ. Geol. Bull. 2017, 72, 200–208. [Google Scholar] [CrossRef]
- Yan, T.; Bai, J.; Yi, A.L.Z.; Shen, Z. SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components. Sustainability 2018, 10, 941. [Google Scholar] [CrossRef] [Green Version]
- Bormann, H. Runoff regime changes in German rivers due to climate change. Erkunde 2010, 64, 257–279. [Google Scholar] [CrossRef]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef]
- Barbalić, D.; Kuspilić, N. Trends of indicators of hydrological alterations. Gradevinar 2014, 66, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.-E.; Minea, I. The impact of climate changes on rivers discharge in Eastern Romania. Theor. Appl. Clim. 2014, 120, 563–573. [Google Scholar] [CrossRef]
- Stonevičius, E.; Valiuškevičius, G.; Rimkus, E.; Kažys, J. Climate induced changes of Lithuanian Rivers runoff in 1960–2009. Water Resour. 2014, 41, 592–603. [Google Scholar] [CrossRef]
- Stagl, J.; Hattermann, F.F. Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios. Water 2015, 7, 6139–6172. [Google Scholar] [CrossRef]
- Radevski, I.; Gorin, S.; Taleska, M.; Dimitrovska, O. Natural regime of streamflow trends in Macedonia. Geografie 2018, 123, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Jaagus, J.; Sepp, M.; Tamm, T.; Järvet, A.; Mõisja, K. Trends and regime shifts in climatic conditions and river runoff in Estonia during1951–2015. Earth Syst. Dyn. 2017, 8, 963–976. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K. Flow Characteristics of the Vistula River at the Tczew Gauging Station in 1951–2010 Based on Flashiness Index, Proceedings of the 4rd International Conference Water Resources and Wetlands, Tulcea, Romania, 5–9 September 2018; Gastescu, P., Bretcan, P., Eds.; Romanian Limnogeographical Association: Târgovişte, Romania, 2018; pp. 119–129. [Google Scholar]
- Kubiak-Wójcicka, K.; Zelenakova, M.; Purcz, P.; Simovova, D. The use of a Standardized Runoff Indicator for hydrological characterization of selected rivers of Poland and Slovakia. Middle Pomeranian Sci. Soc. Environ. Prot. 2019, 21, 167–183. [Google Scholar]
- Stahl, K.; Hisdal, H.; Hannaford, J.; Tallaksen, L.; Van Lanen, H.; Sauquet, E.; Demuth, S.; Fendekova, M.; Jordar, J. Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 2010, 14, 2367–2382. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Bai, X.; Shu, D.; Tian, Y. Runoff response to climate change and human activities in a typical karst watershed, SW China. PLoS ONE 2018, 13, e0193073. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: The physical science basis. In Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Watanabe, T.; Cullmann, J.; Pathak, C.S.; Turunen, M.; Emami, K.; Ghinnasi, G.; Siddiqi, Y. Management of climatic extremeswith focus on floods and droughts in agriculture. Irrig. Drain. 2018, 67, 29–42. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P.; Alcamo, J.; Henrichs, T.; Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: A continental integrated analysis. Clim. Chang. 2006, 75, 273–299. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Pińskwar, I. Changing floods in Europe. In Changes in Flood Risk in Europe; Kundzewicz, Z.W., Ed.; International Association of Hydrological Sciences; CRC Press: Boca Raton, FL, USA, 2012; pp. 83–96. [Google Scholar]
- Kundzewicz, Z.W. Adapting flood preparedness tools to changing flood risk condition the situation in Poland. Oceanologia 2014, 56, 385–407. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding Flood Regime Changes in Europe: A state of the art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Gaál, L.; Hall, J.; Kiss, A.; Komma, J.; Nester, T.; Parajka, J.; Perdigão, R.A.P.; Plavcová, L.; Rogger, M.; et al. Increasing river floods: Fiction or reality? Wiley Interdiscip. Rev. Water 2015, 2, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Kreibich, H.; Di Baldassarre, G.; Vorogushyn, S.; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.M.; Bubeck, P.; Caloiero, T.; et al. Adaptation to flood risk: Results of international paired flood event studies. Earth’s Future 2017, 5, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Stahl, K.; Kohn, I.; Blauhut, V.; Urquijo, J.; De Stefano, L.; Acácio, V.; Dias, S.; Stagge, J.H.; Tallaksen, L.M.; Kampragou, E.; et al. Impacts of European drought events: Insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 2016, 16, 801–819. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kędziora, A.; Kundzewicz, Z.W. Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat. Hazards Earth Syst. Sci. 2010, 10, 1725–1737. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wires Clim. Chang. 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.W.; Pociask-Karteczka, J.; Skrzypczyk, L. Water resources and their use. Nauka 2014, 1, 77–98. (In Polish) [Google Scholar]
- Kubiak-Wójcicka, K.; Kielik, M. Water and wastewater management condition in Poland. In Water Resources in Poland. Part II. Quality; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; in press. [Google Scholar]
- Tomaszewski, E. Low-flow discharge deficits assessment, applying constant and variable low-flow threshold levels, as illustrated with the example of selected catchments in the Vistula river basin. Acta Sci. Pol. Form. Circumiectus 2018, 17, 205–216. [Google Scholar] [CrossRef]
- Dynowska, I. Types of River Regimes in Poland; Zeszyty Naukowe UJ, CCLXVIII, Prace Geogr.; UJ: Kraków, Poland, 1971; Volume 28, p. 150. (In Polish) [Google Scholar]
- Gutry-Korycka, M.; Rotnicka, J. The hydrological regime of rivers in the light of scenarios of global climatic change. Geogr. Pol. 1998, 71, 61–78. [Google Scholar]
- Tomaszewski, T. Multiannual and Seasonal Dynamics of Low-Flows in Rivers of Central Poland; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2012. (In Polish) [Google Scholar]
- Jokiel, P.; Stanisławczyk, B. Long-term changes and variability in the seasonality of river discharge for selected Polish rivers. Czas. Geogr. 2016, 144, 9–133. (In Polish) [Google Scholar] [CrossRef]
- Stanisławczyk, B. Multiannual dynamics of characteristic runoff from selected Polish river catchments in the light of changes of the NAO index. Przegląd Geogr. 2017, 89, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D.; Sobkowiak, L. Detection of changes in flow regime of rivers in Poland. J. Hydrol. Hydromech. 2018, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Banasik, K.; Hejduk, L. Long-term changes in runoff from a small agricultural catchment. Soil Water Res. 2012, 7, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U.; Piętka, I. Streamflow changes in mesoscale lowland catchment under future climate conditions. Pap. Glob. Chang. 2012, 19, 53–65. [Google Scholar] [CrossRef]
- Somorowska, U. Climate-driven changes to streamflow patterns in a groundwater-dominated catchment. Acta Geophys. 2017, 65, 789–798. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Kornaś, M. Impact of hydrotechnical structures on hydrological regime of the Gwda and Drawa rivers. Quaest. Geogr. 2015, 34, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Szcześniak, M.; Piniewski, M. Improvement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchments. Water 2015, 7, 747–779. [Google Scholar] [CrossRef]
- Wałęga, A.; Młyński, D.; Bogdał, A.; Kowalik, T. Analysis of the course and frequency of high water stages in selected catchments of the Upper Vistula Basin in the South of Poland. Water 2016, 8, 394. [Google Scholar] [CrossRef]
- Meresa, H.K.; Osuch, M.; Romanowicz, R. Hydro-meteorological drought projections into the 21-st Century for selected Polish Catchments. Water 2016, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Górnik, M.; Holko, L.; Pociask-Karteczka, J.; Bičárová, S. Variability of precipitation and runoff in the entire High Tatra Mountains in the period 1961–2010. Pr. Geogr. 2017, 151, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Jokiel, P.; Tomalski, P. Seasonality of outflow in selected Carpathian catchments. Przegląd Geogr. 2017, 89, 29–44. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Marcinkowski, P.; Kundzewicz, Z.W. Trend detection in river flow indices in Poland. Acta Geophys. 2018, 66, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Kędra, M. Altered precipitation and flow patterns in the Dunajec River Basin. Water 2017, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Wrzesiński, D. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophys. 2016, 64, 1825–1839. [Google Scholar] [CrossRef] [Green Version]
- Baran-Gurgul, K.; Bodziony, M.; Kołodziejczyk, K. Variability of the runoff coefficient for selected catchments in the upper Vistula river catchment. Acta Sci. Pol. Form. Circumiectus 2018, 18, 13–22. [Google Scholar] [CrossRef]
- Wrzesiński, D. Regional differences in the influence of the North Atlantic Oscillation on seasonal river runoff in Poland. Quaest. Geogr. 2011, 30, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ilnicki, P.; Farat, R.; Górecki, K.; Lewandowski, P. Long-term air temperature and precipitation variability in the Warta River catchment area. J. Water Land Dev. 2015, 27, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Szcześniak, M.; Huang, S.; Kundzewicz, Z.W. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol. Res. 2018, 49, 2. [Google Scholar] [CrossRef]
- Central Statistical Office. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 5 June 2020).
- Kubiak-Wójcicka, K. Long-term variability of runoff of Vistula River in 1951–2015. In Proceedings of the “Air and Water—Components of the Environment” Conference Proceedings, Cluj-Napoca, Romania, 22–24 March 2019; pp. 109–120. [Google Scholar] [CrossRef]
- Habel, M. Dynamics of the Vistula River Channel Deformations Downstream of the Włocławek Reservoir; Kazimierz Wielki University Press: Bydgoszcz, Poland, 2013; p. 138. (In Polish) [Google Scholar]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation onflow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef] [PubMed]
- Kubiak-Wójcicka, K. Assessment of Water Resources in Poland. In Water Resources Management in Poland. Part II: Quality; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; in press. [Google Scholar]
- Maciejewski, M.; Ostojski, M.S.; Walczykiewicz, T. (Eds.) The Vistula River Basin. Monograph of the Flood May–June 2010; IMGW-PIB: Warszawa, Poland, 2011. (In Polish) [Google Scholar]
- Bąk, B.; Kubiak-Wójcicka, K. Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015. J. Water Land Dev. 2017, 32, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Bąk, B. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess. 2018, 190, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acquaotta, F.; Fratianni, S.; Venema, V. Assessment of parallel precipitation measurements networks in Piedmont, Italy. Int. J. Climatol. 2016, 36, 3963–3974. [Google Scholar] [CrossRef] [Green Version]
- Fortin, G.; Acquaotta, F.; Fratianni, S. The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013). Theor. Appl. Clim. 2017, 130, 163–172. [Google Scholar] [CrossRef]
- Baronetti, A.; González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Acquaotta, F.; Fratianni, S. A weekly spatio-temporal distribution of drought events over the Po Plain (North Italy) in the last five decades. Int. J. Climatol. 2020, 40, 4463–4476. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Theil, H. A rank-invariant method of linear and poly-nomial regression analysis. Ned. Acad. Wet. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hannaford, J.; Buys, G.; Stahl, K.; Tallaksen, M. The influence of decadal-scale variability on trends in long European streamflow records. Hydrol. Earth Syst. Sci. 2013, 17, 2717–2733. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Villanueva, V.; Stoffel, M.; Wyżga, B.; Kundzewicz, Z.W.; Czajka, B.; Niedźwiedź, T. Decadal variability of floods in the northern foreland of the Tatra Mountains. Reg. Environ. Chang. 2016, 16, 603–615. [Google Scholar] [CrossRef]
- Górnik, M. Wieloletnie zmiany przepływów Wisły i Bugu (1951–2015) (Long term (1951–2015) changes in runoff along Poland’s Rivers Vistula and Bug. Przegląd Geogr. 2018, 90, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Wieloletnia zmienność sezonowych opadów w Polsce (Multiannual variability of seasonal precipitation in Poland). Water-Environ.-Rural Areas 2012, 12, 45–60. [Google Scholar]
- Szwed, M. Variability of precipitation in Poland under climate change. Theor. Appl. Clim. 2018, 135, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Clim. 2019, 135, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Żmudzka, E. Contemporary changes of climate of Poland. Acta Agrophysica 2009, 13, 555–568. (In Polish) [Google Scholar]
- Michalska, B. Tendencies of air temperature changes in Poland. Pr. I Stud. Geogr. 2011, 47, 67–75. (In Polish) [Google Scholar]
- Skowera, B.; Kopcińska, J.; Kopeć, B. Changes in thermal and precipitation conditions in Poland in 1971–2010. Ann. Wars. Univ. Life Sci.-SGGW. Land Reclam. 2014, 46, 153–162. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A.; Krużel, J. The diversification of air temperature trends in Poland (1981–2010). Pol. J. Environ. Stud. 2016, 25, 2205–2209. [Google Scholar] [CrossRef]
- Owczarek, M.; Filipiak, J. Contemporary changes of thermal conditions in Poland, 1951–2015. Bull. Geogr. Phys. Geogr. Ser. 2016, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Kejna, M.; Araźny, A.; Maszewski, R.; Przybylak, R.; Uscka-Kowalkowska, J.; Vizi, Z. Daily minimum and maximum temperature in Poland in years 1951–2005. Bull. Geogr. Phys. Geogr. Ser. 2009, 2, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Pospieszyńska, A.; Przybylak, R. Air temperature changes in Toruń (central Poland) from 1871 to 2010. Theor. Appl. Clim. 2019, 135, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns and driving factors. Meteorol. Hydrol. Water Manag. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Temporal Variability of Summer Temperature Extremes in Poland. Atmosphere 2017, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Graczyk, Z.; Pińskwar, I.; Kundzewicz, Z.W.; Hov, Ø.; Førland, E.J.; Szwed, M.; Choryński, A. The heat goes on changes in indices of hot extremes in Poland. Theor. Appl. Climatol. 2017, 129, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Owczarek, M. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theor. Appl. Clim. 2020, 139, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U. Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef] [Green Version]
- Mostowik, K.; Siwek, J.; Kisiel, M.; Kowalik, K.; Krzysik, M.; Plenzler, J.; Rzonca, B. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena 2019, 182, 104174. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska-Senoner, A.E.; Ranzi, R.; Banasik, K. Long-term changes of hydrological variables in a small lowland watershed in Central Poland. Water 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Solarczyk, A.; Kubiak-Wójcicka, K. The exhaustion of water resources in the Kuyavian-Pomeranian voivodeship in drought conditions in 2015. In Proceedings of the Research for Rural Development 2019: Annual 25th International Scientific Conference, Jelgava, Latvia, 15–17 May 2019; Volume 1, pp. 118–125. [Google Scholar] [CrossRef]
Meteorological Stations | Longitude | Latitude | Annual Average Precipitation (mm) | Annual Average Air Temperature (°C) | ||||
---|---|---|---|---|---|---|---|---|
1951–1980 | 1981–2015 | 1951–2015 | 1951–1980 | 1981–2015 | 1951–2015 | |||
Bielsko-Biała | 19 00 04 | 49 48 29 | 1016.1 | 959.9 | 987.2 | 7.8 | 8.6 | 8.2 |
Kraków | 19 48 07 | 50 04 49 | 679.0 | 661.7 | 669.7 | 7.7 | 8.6 | 8.2 |
Kielce | 20 41 32 | 50 48 37 | 650.0 | 614.0 | 630.6 | 7.2 | 7.9 | 7.6 |
Lublin | 22 23 37 | 51 13 01 | 600.8 | 576.6 | 587.8 | 7.4 | 7.9 | 7.7 |
Łódź | 19 23 59 | 51 43 24 | 563.4 | 559.4 | 561.2 | 7.6 | 8.4 | 8.0 |
Warsaw | 20 57 40 | 52 09 46 | 507.8 | 532.1 | 522.0 | 7.8 | 8.6 | 8.2 |
Toruń | 18 35 43 | 53 02 31 | 527.7 | 529.7 | 528.9 | 7.6 | 8.6 | 8.1 |
Białystok | 23 09 44 | 53 06 26 | 597.3 | 575.9 | 585.8 | 6.7 | 7.3 | 7.1 |
Chojnice | 17 31 57 | 53 42 55 | 566.7 | 580.5 | 575.4 | 6.9 | 7.7 | 7.3 |
Hydrological Stations | Basin Area | Km of River Section | Average Annual Outflow (m3·s−1)/Unit Outflow (dm3·s−1·km−2) | ||
---|---|---|---|---|---|
(km2) | 1951–1980 | 1981–2015 | 1951–2015 | ||
Nowy Bieruń | 1780 | 919.8 | 21.9/12.3 | 20.4/11.5 | 21.1/11.8 |
Sandomierz | 31,810 | 654.4 | 303.0/9.5 | 281.0/8.8 | 295.0/9.3 |
Warsaw | 84,630 | 430.6 | 600.0/7.1 | 553.0/6.5 | 579.0/6.8 |
Tczew | 193,923 | 32.8 | 1072.0/5.5 | 1020.0/5.3 | 1044.0/5.4 |
Years | Precipitation | Temperature | ||||
---|---|---|---|---|---|---|
Trend mm/10 year | S Mann–Kendall Z Test Statistics | Normalized Z Test Statistics | Trend °C/10 Year | S Mann–Kendall Statistics | Normalized Z Test Statistics | |
Bielsko-Biała | ||||||
1951–1980 | −12.70 | −13 | −0.214 | 0.12 | −22 | −0.375 |
1981–2015 | 42.50 | 84 | 1.179 | 0.44 | 203 | 2.869 |
1951–2015 | −6.25 | −158 | −0.889 | 0.25 | 753 | 4.257 |
Kraków | ||||||
1951–1980 | 43.87 | 79 | 1.392 | −0.12 | −63 | −1.106 |
1981–2015 | 21.04 | 41 | 0.568 | 0.35 | 142 | 2.002 |
1951–2015 | 3.63 | 20 | 0.108 | 0.24 | 658 | 3.720 |
Kielce | ||||||
1951–1980 | 8.11 | 5 | 0.071 | −0.20 | −89 | −1.570 |
1981–2015 | 27.71 | 108 | 1.520 | 0.40 | 184 | 2.599 |
1951–2015 | −3.14 | −20 | −0.108 | 0.19 | 555 | 3.136 |
Lublin | ||||||
1951–1980 | 31.36 | 93 | 1.641 | −0.33 | −115 | −2.034 |
1981–2015 | 41.28 | 177 | 2.499 | 0.45 | 193 | 2.727 |
1951–2015 | 3.97 | 156 | 0.878 | 0.14 | 406 | 2.293 |
Łódź | ||||||
1951–1980 | 35.23 | 103 | 1.820 | −0.05 | −41 | −0.714 |
1981–2015 | 15.70 | 73 | 1.203 | 0.35 | 142 | 2.002 |
1951–2015 | 5.01 | 114 | 0.640 | 0.24 | 685 | 3.872 |
Warsaw | ||||||
1951–1980 | 36.31 | 105 | 1.855 | −0.09 | −50 | −0.874 |
1981–2015 | 27.79 | 139 | 1.960 | 0.43 | 180 | 2.542 |
1951–2015 | 13.08 | 358 | 2.021 | 0.25 | 688 | 3.889 |
Białystok | ||||||
1951–1980 | 51.00 | 105 | 1.855 | −0.22 | −98 | −1.731 |
1981–2015 | 22.40 | 89 | 1.250 | 0.27 | 114 | 1.605 |
1951–2015 | 2.56 | 82 | 0.459 | 0.16 | 470 | 2.655 |
Toruń | ||||||
1951–1980 | 51.00 | 92 | 1.624 | 0.05 | 4 | 0.054 |
1981–2015 | 16.84 | 53 | 0.738 | 0.30 | 110 | 1.548 |
1951–2015 | 8.02 | 193 | 1.087 | 0.27 | 752 | 4.252 |
Chojnice | ||||||
1951–1980 | 16.10 | −7 | −0.107 | −0.14 | −17 | −0.321 |
1981–2015 | 33.00 | 132 | 1.860 | 0.36 | 159 | 2.244 |
1951–2015 | 8.71 | 177 | 0.996 | 0.25 | 751 | 4.246 |
Hydrological Station | Average Outflow (m3·s−1)/Cv | Average Unit Outflow (dm3·s−1·km−2) | ||||
---|---|---|---|---|---|---|
1951–1980 | 1981–2015 | 1951–2015 | 1951–1980 | 1981–2015 | 1951–2015 | |
Nowy Bieruń | 21.9/0.26 | 20.4/0.32 | 21.1/0.29 | 12.3 | 11.5 | 11.9 |
Sandomierz | 300.0/0.20 | 281.0/0.28 | 290.0/0.24 | 9.4 | 8.8 | 9.1 |
Warsaw | 592.0/0.21 | 564.0/0.23 | 577.0/0.22 | 7.0 | 6.7 | 6.8 |
Tczew | 1072.0/0.22 | 1020.0/0.21 | 1044.0/0.22 | 5.5 | 5.3 | 5.4 |
Years | Trend m3.s−1/10 year | S Mann–Kendall Statistics | Normalized Z Test Statistics | Probability/Trend |
---|---|---|---|---|
Nowy Bieruń | ||||
1951–1980 1981–2015 1951–2015 | 2.08 2.21 0.22 | 85 129 33 | 1.499 1.818 0.181 | Non-significant Non-significant Non-significant |
Sandomierz | ||||
1951–1980 1981–2015 1951–2015 | 31.34 23.76 2.56 | 127 111 0 | 2.248 1.562 0 | Increasing Non-significant Non-significant |
Warsaw | ||||
1951–1980 1981–2015 1951–2015 | 61.81 35.82 5.29 | 136 101 58 | 2.409 1.420 0.323 | Increasing Non-significant Non-significant |
Tczew | ||||
1951–1980 1981–2015 1951–2015 | 154.22 6.78 4.32 | 166 6 15 | 2.944 0.071 0.079 | Increasing Non-significant Non-significant |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak-Wójcicka, K. Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland). Resources 2020, 9, 103. https://doi.org/10.3390/resources9090103
Kubiak-Wójcicka K. Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland). Resources. 2020; 9(9):103. https://doi.org/10.3390/resources9090103
Chicago/Turabian StyleKubiak-Wójcicka, Katarzyna. 2020. "Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland)" Resources 9, no. 9: 103. https://doi.org/10.3390/resources9090103
APA StyleKubiak-Wójcicka, K. (2020). Variability of Air Temperature, Precipitation and Outflows in the Vistula Basin (Poland). Resources, 9(9), 103. https://doi.org/10.3390/resources9090103