Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer
Abstract
:1. Introduction
2. Research Background
3. Methods
3.1. Developing Highly Sensitive and Selective Nanoscale Photonic Metamaterials with Tunable Narrowband Wavelength Selectivity for Lung and Ovarian Cancer Biomarkers
3.1.1. Design and Characteristics of Tunable Wavelength Selectivity of Photonic Metamaterials
Near-Field-Enhanced Selectivity of Photonic Metamaterials
Photonic-Metamaterial-Based Wavelength-Selective Device
3.1.2. Fabrication of Selective Thermal Emitter and System Setup
Micro/Nanofabrication of Selective Emitters
- Near-Infrared (NIR) Source: This provides the excitation necessary to induce thermal emission from the nanostructured surfaces.
- IR Spectrometer (Photodetector): Integrated into the system to detect the wavelength-specific emissivity changes caused by the interaction of cancer biomarkers with the coated surfaces. The spectrometer records the emission spectrum across the desired wavelength range.
- Signal Conditioning Circuits: These are included to filter, amplify, and process the signals generated by the IR spectrometer, ensuring accurate data acquisition.
Setup of an Optoelectronic System
3.2. Evaluating and Demonstrating the Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensor by Integrating with a Sample Collection Microneedle Array
3.2.1. Detection of Selected Early Lung and Ovarian Cancer Biomarkers
Coating with Capturing Antibodies for Biomarkers
Fabrication of Sample Collection Hollow Microneedles
3.2.2. Validation Testing Using EGFP Protein and Anti-EGFP Antibody
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Pon, J.R.; Marra, M.A. Driver and passenger mutations in cancer. Annu. Rev. Pathol. 2015, 10, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Sequist, L.V.; Heist, R.S.; Shaw, A.T.; Fidias, P.; Rosovsky, R.; Temel, J.S.; Lennes, I.T.; Digumarthy, S.; Waltman, B.A.; Bast, E.; et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 2011, 22, 2616–2624. [Google Scholar] [CrossRef] [PubMed]
- Goetsch, C.M. Genetic tumor profiling and genetically targeted cancer therapy. Semin. Oncol. Nurs. 2011, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Dictionary of Cancer Terms: KRAS Gene. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms (accessed on 1 September 2011).
- National Center for Biotechnology Information. Homo Sapiens Gene KRAS, Encoding v-ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog. Available online: https://www.ncbi.nlm.nih.gov (accessed on 1 September 2011).
- Chiarle, R.; Voena, C.; Ambrogio, C.; Piva, R.; Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 2008, 8, 11–23. [Google Scholar] [CrossRef]
- Ling, W.; Chen, Z.; Li, M. Guidelines for Diagnosis and Treatment of Ovarian Cancer; National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- Jiang, X.; Tang, H.; Chen, T. Epidemiology of gynecologic cancers in China. J. Gynecol. Oncol. 2018, 29, e7. [Google Scholar] [CrossRef]
- Cancer Cell International. Biosensing chips for cancer diagnosis and treatment: A new wave towards clinical innovation. Cancer Cell Int. 2023, 22, 354. [Google Scholar]
- Khemtonglang, K.; Liu, W.; Lee, H.; Wang, W.; Li, S.; Li, Z.; Shepherd, S.; Yang, Y.; Diel, D.; Fang, Y.; et al. Portable, smartphone-linked, and miniaturized photonic resonator absorption microscope (PRAM Mini) for point-of-care diagnostics. Biomed. Opt. Express 2024, 15, 5691–5705. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Archana; Noumani, A.; Himanshu, J.K.; Chakravorty, S.; Solanki, P.R. Recent advancement in the detection of potential cancer biomarkers using the nanomaterial integrated electrochemical sensing technique. Mater. Adv. 2023, 5, 475–503. [Google Scholar] [CrossRef]
- Asano, H.; Toyooka, S.; Tokumo, M.; Ichimura, K.; Aoe, K.; Ito, S.; Tsukuda, K.; Ouchida, M.; Aoe, M.; Katayama, H.; et al. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin. Cancer Res. 2006, 12, 434–448. [Google Scholar] [CrossRef]
- Babuty, A.; Joulain, K.; Chapuis, P.-O.; Greffet, J.-J.; De Wilde, Y. Blackbody spectrum revisited in the near field. Phys. Rev. Lett. 2013, 110, 146103. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Zhang, Z.; Fu, C. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 2009, 33, 1203–1232. [Google Scholar] [CrossRef]
- Francoeur, M.; Menguc, M.P.; Vaillon, R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 2002–2018. [Google Scholar] [CrossRef]
- Biehs, S.-A.; Greffet, J.-J. Near-field heat transfer between a nanoparticle and a rough surface. Phys. Rev. B 2010, 81, 245414. [Google Scholar] [CrossRef]
- Liu, B.; Shen, S. Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method. Phys. Rev. B 2013, 87, 115403. [Google Scholar] [CrossRef]
- Perez-Madrid, A.; Rubi, J.M.; Lapas, L.C. Heat transfer between nanoparticles: Thermal conductance for near-field interactions. Phys. Rev. B 2008, 77, 155417. [Google Scholar] [CrossRef]
- Ottens, R.; Quetschke, V.; Wise, S.; Alemi, A.; Lundock, R.; Mueller, G.; Reitze, D.H.; Tanner, D.B.; Whiting, B.F. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 2011, 107, 014301. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Shen, S.; Chen, G. Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 2008, 78, 115303. [Google Scholar] [CrossRef]
- Zhang, Z. Nano/Microscale Heat Transfer; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Narayanaswamy, A.; Shen, S.; Hu, L.; Chen, X.; Chen, G. Breakdown of the Planck blackbody radiation law at nanoscale gaps. Appl. Phys. A 2009, 96, 357–362. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Zheng, Y. Theory of thermal nonequilibrium entropy in near-field thermal radiation. Phys. Rev. B 2013, 88, 075412. [Google Scholar] [CrossRef]
- Zheng, Y.; Narayanaswamy, A. Patch contribution to near-field radiative energy transfer and van der Waals pressure between two half-spaces. Phys. Rev. A 2014, 89, 022512. [Google Scholar] [CrossRef]
- Ghanekar, A.; Lin, L.; Su, J.; Sun, H.; Zheng, Y. Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes. Opt. Express 2015, 23, A1129–A1139. [Google Scholar] [CrossRef] [PubMed]
- Ghanekar, A.; Lin, L.; Zheng, Y. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Opt. Express 2016, 24, A868–A877. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, A.; Zheng, Y. A Green’s Function Formalism of Energy and Momentum Transfer in Fluctuational Electrodynamics. J. Quant. Spectrosc. Radiat. Transf. 2014, 132, 12–21. [Google Scholar] [CrossRef]
- Ghanekar, A.; Ji, J.; Zheng, Y. High-rectification near-field thermal diode using phase change periodic nanostructure. Appl. Phys. Lett. 2016, 109, 123106. [Google Scholar] [CrossRef]
- Ghanekar, A.; Ricci, M.; Zhang, Z.M. Enhanced Thermal Rectification of Near-Field Thermal Diode Using Surface Gratings. Phys. Rev. Appl. 2018, 10, 024042. [Google Scholar]
- Ansys Optics Support. Bragg Grating Initial Design with FDTD. Available online: https://optics.ansys.com (accessed on 23 October 2024).
- Cao, Y.; Zhang, X.; Zhao, H. Design and Simulation of Layered Periodic Nanoarray Structures for Thermal Radiation Applications. Front. Energy Res. 2022, 10, 995782. Available online: https://www.frontiersin.org/articles/10.3389/fenrg.2022.995782/full (accessed on 23 October 2024).
- Vogel, M.M.; Rumpel, M. Single-Layer Resonant-Waveguide Grating for Polarization and Wavelength Selection in Yb. Thin-Disk Laser. Opt. Express 2012, 20, 4024–4031. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Camm, F.C.; Connell, P.S.; Mooz, W.E.; Wolf, K.A.; Wuebbles, D.J.; Bamezai, A. Future emission scenarios for chemicals that may deplete stratospheric ozone. Nature 1988, 330, 711–716. [Google Scholar] [CrossRef]
- Mackay, D.; Paterson, S. Evaluating the multimedia fate of organic chemicals: A level III fugacity model. Environ. Sci. Technol. 1991, 25, 427–436. [Google Scholar] [CrossRef]
- Sasihithlu, K.; Narayanaswamy, A. Proximity effects in radiative heat transfer. Phys. Rev. B 2011, 83, 161406. [Google Scholar] [CrossRef]
- Joulain, K.; Mulet, J.-P.; Marquier, F.; Carminati, R.; Greffet, J.-J. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties, and Casimir forces revisited in the near field. Surf. Sci. Rep. 2005, 57, 59–112. [Google Scholar] [CrossRef]
- Huth, O.; Rüting, F.; Biehs, S.-A.; Holthaus, M. Shape-dependence of near-field heat transfer between a spheroidal nanoparticle and a flat surface. Eur. Phys. J. Appl. Phys. 2010, 50, 10603. [Google Scholar] [CrossRef]
- Bernardi, M.P.; Dupre, O.; Vaillon, R.; Francoeur, M. Surface polariton mediated thermophotovoltaic power generation. arXiv 2013, arXiv:1309.5969. [Google Scholar]
- Coutts, T.J. An overview of thermophotovoltaic generation of electricity. Sol. Energy Mater. Sol. Cells 2001, 66, 443–452. [Google Scholar] [CrossRef]
- Ghanekar, A.; Lin, L.; Zheng, Y. Mie-Metamaterial Based Selective Thermal Emitter for TPV Application. In Proceedings of the ASME 2016 Heat Transfer Summer Conference. Volume 1: Heat Transfer in Energy Systems (V001T03A009), Washington, DC, USA, 10–14 July 2016. [Google Scholar] [CrossRef]
- Laroche, M.; Carminati, R.; Greffet, J.-J. Near-field thermophotovoltaic energy conversion. J. Appl. Phys. 2006, 100, 063704. [Google Scholar] [CrossRef]
- Park, K.; Basu, S.; King, W.P.; Zhang, Z. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 305–316. [Google Scholar] [CrossRef]
- Plawsky, J.L.; Fedorov, A.G.; Garimella, S.V.; Ma, H.B.; Maroo, S.C.; Chen, L.; Nam, Y. Nano- and microstructures for thin-film evaporation: A review. Nanoscale Microscale Thermophys. Eng. 2014, 18, 251–269. [Google Scholar] [CrossRef]
- Bitnar, B.; Durisch, W.; Mayor, J.-C.; Sigg, H.; Tschudi, H. Characterisation of rare earth selective emitters for thermophotovoltaic applications. Sol. Energy Mater. Sol. Cells 2002, 73, 221–234. [Google Scholar] [CrossRef]
- Nelson, R.E. A brief history of thermophotovoltaic development. Semicond. Sci. Technol. 2003, 18, S141. [Google Scholar] [CrossRef]
- Tomer, V.; Teye-Mensah, R.; Tokash, J.; Stojilovic, N.; Kataphinan, W.; Evans, E.; Chase, G.; Ramsier, R.; Smith, D.; Reneker, D. Selective emitters for thermophotovoltaics: Erbia-modified electrospun titania nanofibers. Sol. Energy Mater. Sol. Cells 2005, 85, 477–488. [Google Scholar] [CrossRef]
- Luo, C.; Narayanaswamy, A.; Chen, G.; Joannopoulos, J. Thermal radiation from photonic crystals: A direct calculation. Phys. Rev. Lett. 2004, 93, 213905. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, A.; Chen, G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys. Rev. B 2004, 70, 125101. [Google Scholar] [CrossRef]
- Sergeant, N.; Pincon, O.; Agrawal, M.; Peumans, P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt. Express 2009, 17, 22800–22812. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944–947. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Tang, L.; Yoshie, T. High-Q/B hybrid 3D-2D slab-3D photonic crystal microcavity. Opt. Lett. 2010, 35, 3144–3146. [Google Scholar] [CrossRef]
- Green, M.A.; Pillai, S. Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130–132. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Tian, Y.; Ghanekar, A.; Ricci, M.; Hyde, M.; Gregory, O.; Zheng, Y. A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport. Materials 2018, 11, 862. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Mayo, J.; Canetta, C. Infrared selective emitters with thin films of polar materials. Appl. Phys. Lett. 2014, 104, 183107. [Google Scholar] [CrossRef]
- Chew, W.C. Waves and Fields in Inhomogeneous Media; IEEE Press: Piscataway, NJ, USA, 1995. [Google Scholar]
- Zheng, Y.; Narayanaswamy, A. Lifshitz theory of van der Waals pressure in dissipative media. Phys. Rev. A 2011, 83, 042504. [Google Scholar] [CrossRef]
- Kong, J.A. Electromagnetic Wave Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Peng, S.; Morris, G.M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A 1995, 12, 1087–1096. [Google Scholar] [CrossRef]
- Schuster, T.; Rüffel, J.; Kerwien, N.; Raffer, S.; Osten, W. Normal vector method for convergence improvement using the RCWA for crossed gratings. J. Opt. Soc. Am. A 2007, 24, 2880–2890. [Google Scholar] [CrossRef]
- Niu, X.; Jakatdar, N.; Bao, J.; Spanos, C.J. Specular spectroscopic scatterometry. IEEE Trans. Semicond. Manuf. 2001, 14, 97–111. [Google Scholar]
- Narayanaswamy, A.; Chen, G. Surface modes for near-field thermophotovoltaics. Appl. Phys. Lett. 2003, 82, 3544–3546. [Google Scholar] [CrossRef]
- Dadouche, N.; Mezache, Z.; Tao, J.; Ali, E.; Alsharef, M.; Alwabli, A.; Jaffar, A.; Alzahrani, A.; Berazguia, A. Design and Fabrication of a Novel Corona-Shaped Metamaterial Biosensor for Cancer Cell Detection. Micromachines 2023, 14, 2114. [Google Scholar] [CrossRef]
Method | Sample Size | Sensitivity | Invasiveness | Time Requirement | Cost |
---|---|---|---|---|---|
Traditional Serum Testing | Large (blood) | Moderate | Invasive (blood draw) | Long (lab process) | Moderate to High (lab cost) |
Genomic Sequencing | Large (tumor) | High | Highly Invasive | Long | High (sequencing) |
Electrochemical Biosensor | Small (serum) | Moderate to High | Minimally Invasive | Moderate | Moderate |
Photonic Metamaterial Biosensor (this work) | Extreme Small | High | Minimally Invasive | Short (real-time) | Moderate to Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, S.; Zhang, X.; Liang, H.; Zheng, Y. Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer. Photonics 2024, 11, 1020. https://doi.org/10.3390/photonics11111020
Geng S, Zhang X, Liang H, Zheng Y. Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer. Photonics. 2024; 11(11):1020. https://doi.org/10.3390/photonics11111020
Chicago/Turabian StyleGeng, Shuo, Xuguang Zhang, Haiyan Liang, and Yi Zheng. 2024. "Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer" Photonics 11, no. 11: 1020. https://doi.org/10.3390/photonics11111020
APA StyleGeng, S., Zhang, X., Liang, H., & Zheng, Y. (2024). Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer. Photonics, 11(11), 1020. https://doi.org/10.3390/photonics11111020