Next Article in Journal
L2-Harmonic Forms on Incomplete Riemannian Manifolds with Positive Ricci Curvature
Previous Article in Journal
Upper Bound Design for the Lipschitz Constant of the FG(ν,q)-Entropy Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras

1
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
2
Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
3
Department of Mathematics, Jeju National University, Jeju 63243, Korea
4
Postdoctoral Research Fellow, Shahid Beheshti University, Tehran 1983969411, Iran
*
Author to whom correspondence should be addressed.
Mathematics 2018, 6(5), 74; https://doi.org/10.3390/math6050074
Submission received: 14 March 2018 / Revised: 28 April 2018 / Accepted: 2 May 2018 / Published: 7 May 2018

Abstract

:
The concept of a ( , ) -neutrosophic ideal is introduced, and its characterizations are established. The notions of neutrosophic permeable values are introduced, and related properties are investigated. Conditions for the neutrosophic level sets to be energetic, right stable, and right vanished are discussed. Relations between neutrosophic permeable S- and I-values are considered.

1. Introduction

The notion of neutrosophic set (NS) theory developed by Smarandache (see [1,2]) is a more general platform that extends the concepts of classic and fuzzy sets, intuitionistic fuzzy sets, and interval-valued (intuitionistic) fuzzy sets and that is applied to various parts: pattern recognition, medical diagnosis, decision-making problems, and so on (see [3,4,5,6]). Smarandache [2] mentioned that a cloud is a NS because its borders are ambiguous and because each element (water drop) belongs with a neutrosophic probability to the set (e.g., there are types of separated water drops around a compact mass of water drops, such that we do not know how to consider them: in or out of the cloud). Additionally, we are not sure where the cloud ends nor where it begins, and neither whether some elements are or are not in the set. This is why the percentage of indeterminacy is required and the neutrosophic probability (using subsets—not numbers—as components) should be used for better modeling: it is a more organic, smooth, and particularly accurate estimation. Indeterminacy is the zone of ignorance of a proposition’s value, between truth and falsehood.
Algebraic structures play an important role in mathematics with wide-ranging applications in several disciplines such as coding theory, information sciences, computer sciences, control engineering, theoretical physics, and so on. NS theory is also applied to several algebraic structures. In particular, Jun et al. applied it to B C K / B C I -algebras (see [7,8,9,10,11,12]). Jun et al. [8] introduced the notions of energetic subsets, right vanished subsets, right stable subsets, and (anti-)permeable values in B C K / B C I -algebras and investigated relations between these sets.
In this paper, we introduce the notions of neutrosophic permeable S-values, neutrosophic permeable I-values, ( , ) -neutrosophic ideals, neutrosophic anti-permeable S-values, and neutrosophic anti-permeable I-values, which are motivated by the idea of subalgebras (i.e., S-values) and ideals (i.e., I-values), and investigate their properties. We consider characterizations of ( , ) -neutrosophic ideals. We discuss conditions for the lower (upper) neutrosophic Φ -subsets to be S- and I-energetic. We provide conditions for a triple ( α , β , γ ) of numbers to be a neutrosophic (anti-)permeable S- or I-value. We consider conditions for the upper (lower) neutrosophic Φ -subsets to be right stable (right vanished) subsets. We establish relations between neutrosophic (anti-)permeable S- and I-values.

2. Preliminaries

An algebra ( X ; , 0 ) of type ( 2 , 0 ) is called a B C I -algebra if it satisfies the following conditions:
(I)
( x , y , z X ) ( ( ( x y ) ( x z ) ) ( z y ) = 0 ) ;
(II)
( x , y X ) ( ( x ( x y ) ) y = 0 ) ;
(III)
( x X ) ( x x = 0 ) ;
(IV)
( x , y X ) ( x y = 0 , y x = 0 x = y ) .
If a B C I -algebra X satisfies the following identity:
(V)
( x X ) ( 0 x = 0 ) ,
then X is called a B C K -algebra. Any B C K / B C I -algebra X satisfies the following conditions:
( x X ) x 0 = x ,
( x , y , z X ) x y x z y z , z y z x ,
( x , y , z X ) ( x y ) z = ( x z ) y ,
( x , y , z X ) ( x z ) ( y z ) x y ,
where x y if and only if x y = 0 . A nonempty subset S of a B C K / B C I -algebra X is called a subalgebra of X if x y S for all x , y S . A subset I of a B C K / B C I -algebra X is called an ideal of X if it satisfies the following:
0 I ,
( x , y X ) x y I , y I x I .
We refer the reader to the books [13] and [14] for further information regarding B C K / B C I -algebras.
For any family { a i i Λ } of real numbers, we define
{ a i i Λ } = sup { a i i Λ }
and
{ a i i Λ } = inf { a i i Λ } .
If Λ = { 1 , 2 } , we also use a 1 a 2 and a 1 a 2 instead of { a i i { 1 , 2 } } and { a i i { 1 , 2 } } , respectively.
We let X be a nonempty set. A NS in X (see [1]) is a structure of the form
A : = { x ; A T ( x ) , A I ( x ) , A F ( x ) x X } ,
where A T : X [ 0 , 1 ] is a truth membership function, A I : X [ 0 , 1 ] is an indeterminate membership function, and A F : X [ 0 , 1 ] is a false membership function. For the sake of simplicity, we use the symbol A = ( A T , A I , A F ) for the NS
A : = { x ; A T ( x ) , A I ( x ) , A F ( x ) x X } .
A subset A of a B C K / B C I -algebra X is said to be S-energetic (see [8]) if it satisfies
( x , y X ) x y A { x , y } A .
A subset A of a B C K / B C I -algebra X is said to be I-energetic (see [8]) if it satisfies
( x , y X ) y A { x , y x } A .
A subset A of a B C K / B C I -algebra X is said to be right vanished (see [8]) if it satisfies
( x , y X ) x y A x A .
A subset A of a B C K / B C I -algebra X is said to be right stable (see [8]) if A X : = { a x a A , x X } A .

3. Neutrosophic Permeable Values

Given a NS A = ( A T , A I , A F ) in a set X, α , β ( 0 , 1 ] and γ [ 0 , 1 ) , we consider the following sets:
U T ( A ; α ) = { x X A T ( x ) α } , U T ( A ; α ) = { x X A T ( x ) > α } ,
U I ( A ; β ) = { x X A I ( x ) β } , U I ( A ; β ) = { x X A I ( x ) > β } ,
U F ( A ; γ ) = { x X A F ( x ) γ } , U F ( A ; γ ) = { x X A F ( x ) < γ } ,
L T ( A ; α ) = { x X A T ( x ) α } , L T ( A ; α ) = { x X A T ( x ) < α } ,
L I ( A ; β ) = { x X A I ( x ) β } , L I ( A ; β ) = { x X A I ( x ) < β } ,
L F ( A ; γ ) = { x X A F ( x ) γ } , L F ( A ; γ ) = { x X A F ( x ) > γ } .
We say U T ( A ; α ) , U I ( A ; β ) , and U F ( A ; γ ) are upper neutrosophic Φ -subsets of X, and L T ( A ; α ) , L I ( A ; β ) , and L F ( A ; γ ) are lower neutrosophic Φ -subsets of X, where Φ { T , I , F } . We say U T ( A ; α ) , U I ( A ; β ) , and U F ( A ; γ ) are strong upper neutrosophic Φ -subsets of X, and L T ( A ; α ) , L I ( A ; β ) , and L F ( A ; γ ) are strong lower neutrosophic Φ -subsets of X, where Φ { T , I , F } .
Definition 1
([7]). A NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X is called an ( , ) - neutrosophic subalgebra of X if the following assertions are valid:
x U T ( A ; α x ) , y U T ( A ; α y ) x y U T ( A ; α x α y ) , x U I ( A ; β x ) , y U I ( A ; β y ) x y U I ( A ; β x β y ) , x U F ( A ; γ x ) , y U F ( A ; γ y ) x y U F ( A ; γ x γ y ) ,
for all x , y X , α x , α y , β x , β y ( 0 , 1 ] and γ x , γ y [ 0 , 1 ) .
Lemma 1 
([7]). A NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X is an ( , ) -neutrosophic subalgebra of X if and only if A = ( A T , A I , A F ) satisfies
( x , y X ) A T ( x y ) A T ( x ) A T ( y ) A I ( x y ) A I ( x ) A I ( y ) A F ( x y ) A F ( x ) A F ( y ) .
Proposition 1.
Every ( , ) -neutrosophic subalgebra A = ( A T , A I , A F ) of a B C K / B C I -algebra X satisfies
( x X ) A T ( 0 ) A T ( x ) , A I ( 0 ) A I ( x ) , A F ( 0 ) A F ( x ) .
Proof. 
Straightforward. ☐
Theorem 1.
If A = ( A T , A I , A F ) is an ( , ) -neutrosophic subalgebra of a B C K / B C I -algebra X, then the lower neutrosophic Φ -subsets of X are S-energetic subsets of X, where Φ { T , I , F } .
Proof. 
Let x , y X and α ( 0 , 1 ] be such that x y L T ( A ; α ) . Then
α A T ( x y ) A T ( x ) A T ( y ) ,
and thus A T ( x ) α or A T ( y ) α ; that is, x L T ( A ; α ) or y L T ( A ; α ) . Thus { x , y } L T ( A ; α ) . Therefore L T ( A ; α ) is an S-energetic subset of X. Similarly, we can verify that L I ( A ; β ) is an S-energetic subset of X. We let x , y X and γ [ 0 , 1 ) be such that x y L F ( A ; γ ) . Then
γ A F ( x y ) A F ( x ) A F ( y ) .
It follows that A F ( x ) γ or A F ( y ) γ ; that is, x L F ( A ; γ ) or y L F ( A ; γ ) . Hence { x , y } L F ( A ; γ ) , and therefore L F ( A ; γ ) is an S-energetic subset of X. ☐
Corollary 1.
If A = ( A T , A I , A F ) is an ( , ) -neutrosophic subalgebra of a B C K / B C I -algebra X, then the strong lower neutrosophic Φ -subsets of X are S-energetic subsets of X, where Φ { T , I , F } .
Proof. 
Straightforward. ☐
The converse of Theorem 1 is not true, as seen in the following example.
Example 1.
Consider a B C K -algebra X = { 0 , 1 , 2 , 3 , 4 } with the binary operation * that is given in Table 1 (see [14]).
Let A = ( A T , A I , A F ) be a NS in X that is given in Table 2.
If α [ 0.4 , 0.6 ) , β [ 0.5 , 0.8 ) , and γ ( 0.2 , 0.5 ] , then L T ( A ; α ) = { 1 , 2 , 3 } , L I ( A ; β ) = { 1 , 2 , 3 } , and L F ( A ; γ ) = { 1 , 2 , 3 } are S-energetic subsets of X. Because
A T ( 4 4 ) = A T ( 0 ) = 0.6 0.7 = A T ( 4 ) A T ( 4 )
and/or
A F ( 3 2 ) = A F ( 1 ) = 0.7 0.6 = A F ( 3 ) A F ( 2 ) ,
it follows from Lemma 1 that A = ( A T , A I , A F ) is not an ( , ) -neutrosophic subalgebra of X.
Definition 2.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . Then ( α , β , γ ) is called a neutrosophic permeable S-value for A = ( A T , A I , A F ) if the following assertion is valid:
( x , y X ) x y U T ( A ; α ) A T ( x ) A T ( y ) α , x y U I ( A ; β ) A I ( x ) A I ( y ) β , x y U F ( A ; γ ) A F ( x ) A F ( y ) γ
Example 2.
Let X = { 0 , 1 , 2 , 3 , 4 } be a set with the binary operation * that is given in Table 3.
Then ( X , , 0 ) is a B C K -algebra (see [14]). Let A = ( A T , A I , A F ) be a NS in X that is given in Table 4.
It is routine to verify that ( α , β , γ ) ( 0 , 2 , 1 ] × ( 0.3 , 1 ] × [ 0 , 0.7 ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) .
Theorem 2.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the following condition:
( x , y X ) A T ( x y ) A T ( x ) A T ( y ) A I ( x y ) A I ( x ) A I ( y ) A F ( x y ) A F ( x ) A F ( y ) ,
then ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) .
Proof. 
Let x , y X be such that x y U T ( A ; α ) . Then
α A T ( x y ) A T ( x ) A T ( y ) .
Similarly, if x y U I ( A ; β ) for x , y X , then A I ( x ) A I ( y ) β . Now, let a , b X be such that a b U F ( A ; γ ) . Then
γ A F ( a b ) A F ( a ) A F ( b ) .
Therefore ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) . ☐
Theorem 3.
Let A = ( A T , A I , A F ) be a NS in a B C K -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the following conditions:
( x X ) A T ( 0 ) A T ( x ) , A I ( 0 ) A I ( x ) , A F ( 0 ) A F ( x )
and
( x , y X ) A T ( x ) A T ( x y ) A T ( y ) A I ( x ) A I ( x y ) A I ( y ) A F ( x ) A F ( x y ) A F ( y ) ,
then ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) .
Proof. 
Let x , y , a , b , u , v X be such that x y U T ( A ; α ) , a b U I ( A ; β ) , and u v U F ( A ; γ ) . Then
α A T ( x y ) A T ( ( x y ) x ) A T ( x ) = A T ( ( x x ) y ) A T ( x ) = A T ( 0 y ) A T ( x ) = A T ( 0 ) A T ( x ) = A T ( x ) ,
β A I ( a b ) A I ( ( a b ) a ) A I ( a ) = A I ( ( a a ) b ) A I ( a ) = A I ( 0 b ) A I ( a ) = A I ( 0 ) A I ( a ) = A I ( a ) ,
and
γ A F ( u v ) A F ( ( u v ) u ) A F ( u ) = A F ( ( u u ) v ) A F ( u ) = A F ( 0 v ) A F ( v ) = A F ( 0 ) A F ( v ) = A F ( v )
by Equations (3), (V), (15), and (16). It follows that
A T ( x ) A T ( y ) A T ( x ) α , A I ( a ) A I ( b ) A I ( a ) β , A F ( u ) A F ( v ) A F ( u ) γ .
Therefore ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) . ☐
Theorem 4.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) , then upper neutrosophic Φ -subsets of X are S-energetic where Φ { T , I , F } .
Proof. 
Let x , y , a , b , u , v X be such that x y U T ( A ; α ) , a b U I ( A ; β ) , and u v U F ( A ; γ ) . Using Equation (13), we have A T ( x ) A T ( y ) α , A I ( a ) A I ( b ) β , and A F ( u ) A F ( v ) γ . It follows that
A T ( x ) α or A T ( y ) α , that is , x U T ( A ; α ) or y U T ( A ; α ) ;
A I ( a ) β or A I ( b ) β , that is , a U I ( A ; β ) or b U I ( A ; β ) ;
and
A F ( u ) γ or A F ( v ) γ , that is , u U F ( A ; γ ) or v U F ( A ; γ ) .
Hence { x , y } U T ( A ; α ) , { a , b } U I ( A ; β ) , and { u , v } U F ( A ; γ ) . Therefore U T ( A ; α ) , U I ( A ; β ) , and U F ( A ; γ ) are S-energetic subsets of X. ☐
Definition 3.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . Then ( α , β , γ ) is called a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) if the following assertion is valid:
( x , y X ) x y L T ( A ; α ) A T ( x ) A T ( y ) α , x y L I ( A ; β ) A I ( x ) A I ( y ) β , x y L F ( A ; γ ) A F ( x ) A F ( y ) γ .
Example 3.
Let X = { 0 , 1 , 2 , 3 , 4 } be a set with the binary operation * that is given in Table 5.
Then ( X , , 0 ) is a B C K -algebra (see [14]). Let A = ( A T , A I , A F ) be a NS in X that is given in Table 6.
It is routine to verify that ( α , β , γ ) ( 0.3 , 1 ] × ( 0.2 , 1 ] × [ 0 , 0.9 ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) .
Theorem 5.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) is an ( , ) -neutrosophic subalgebra of X, then ( α , β , γ ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) .
Proof. 
Let x , y , a , b , u , v X be such that x y L T ( A ; α ) , a b L I ( A ; β ) , and u v L F ( A ; γ ) . Using Lemma 1, we have
A T ( x ) A T ( y ) A T ( x y ) α , A I ( a ) A I ( b ) A I ( a b ) β , A F ( u ) A F ( v ) A F ( u v ) γ ,
and thus ( α , β , γ ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) . ☐
Theorem 6.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If ( α , β , γ ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) , then lower neutrosophic Φ -subsets of X are S-energetic where Φ { T , I , F } .
Proof. 
Let x , y , a , b , u , v X be such that x y L T ( A ; α ) , a b L I ( A ; β ) , and u v L F ( A ; γ ) . Using Equation (17), we have A T ( x ) A T ( y ) α , A I ( a ) A I ( b ) β , and A F ( u ) A F ( v ) γ , which imply that
A T ( x ) α or A T ( y ) α , that is , x L T ( A ; α ) or y L T ( A ; α ) ;
A I ( a ) β or A I ( b ) β , that is , a L I ( A ; β ) or b L I ( A ; β ) ;
and
A F ( u ) γ or A F ( v ) γ , that is , u L F ( A ; γ ) or v L F ( A ; γ ) .
Hence { x , y } L T ( A ; α ) , { a , b } L I ( A ; β ) , and { u , v } L F ( A ; γ ) . Therefore L T ( A ; α ) , L I ( A ; β ) , and L F ( A ; γ ) are S-energetic subsets of X. ☐
Definition 4.
A NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X is called an ( , ) - neutrosophic ideal of X if the following assertions are valid:
( x X ) x U T ( A ; α ) 0 U T ( A ; α ) x U I ( A ; β ) 0 U I ( A ; β ) x U F ( A ; γ ) 0 U F ( A ; γ ) ,
( x , y X ) x y U T ( A ; α x ) , y U T ( A ; α y ) x U T ( A ; α x α y ) x y U I ( A ; β x ) , y U I ( A ; β y ) x U I ( A ; β x β y ) x y U F ( A ; γ x ) , y U F ( A ; γ y ) x U F ( A ; γ x γ y ) ,
for all α , β , α x , α y , β x , β y ( 0 , 1 ] and γ , γ x , γ y [ 0 , 1 ) .
Theorem 7.
A NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X is an ( , ) -neutrosophic ideal of X if and only if A = ( A T , A I , A F ) satisfies
( x , y X ) A T ( 0 ) A T ( x ) A T ( x y ) A T ( y ) A I ( 0 ) A I ( x ) A I ( x y ) A I ( y ) A F ( 0 ) A F ( x ) A F ( x y ) A F ( y ) .
Proof. 
Assume that Equation (20) is valid, and let x U T ( A ; α ) , a U I ( A ; β ) , and u U F ( A ; γ ) for any x , a , u X , α , β ( 0 , 1 ] and γ [ 0 , 1 ) . Then A T ( 0 ) A T ( x ) α , A I ( 0 ) A I ( a ) β , and A F ( 0 ) A F ( u ) γ . Hence 0 U T ( A ; α ) , 0 U I ( A ; β ) , and 0 U F ( A ; γ ) , and thus Equation (18) is valid. Let x , y , a , b , u , v X be such that x y U T ( A ; α x ) , y U T ( A ; α y ) , a b U I ( A ; β a ) , b U I ( A ; β b ) , u v U F ( A ; γ u ) , and v U F ( A ; γ v ) for all α x , α y , β a , β b ( 0 , 1 ] and γ u , γ v [ 0 , 1 ) . Then A T ( x y ) α x , A T ( y ) α y , A I ( a b ) β a , A I ( b ) β b , A F ( u v ) γ u , and A F ( v ) γ v . It follows from Equation (20) that
A T ( x ) A T ( x y ) A T ( y ) α x α y , A I ( a ) A I ( a b ) A I ( b ) β a β b , A F ( u ) A F ( u v ) A F ( v ) γ u γ v .
Hence x U T ( A ; α x α y ) , a U I ( A ; β a β b ) , and u U F ( A ; γ u γ v ) . Therefore A = ( A T , A I , A F ) is an ( , ) -neutrosophic ideal of X.
Conversely, let A = ( A T , A I , A F ) be an ( , ) -neutrosophic ideal of X. If there exists x 0 X such that A T ( 0 ) < A T ( x 0 ) , then x 0 U T ( A ; α ) and 0 U T ( A ; α ) , where α = A T ( x 0 ) . This is a contradiction, and thus A T ( 0 ) A T ( x ) for all x X . Assume that A T ( x 0 ) < A T ( x 0 y 0 ) A T ( y 0 ) for some x 0 , y 0 X . Taking α : = A T ( x 0 y 0 ) A T ( y 0 ) implies that x 0 y 0 U T ( A ; α ) and y 0 U T ( A ; α ) ; but x 0 U T ( A ; α ) . This is a contradiction, and thus A T ( x ) A T ( x y ) A T ( y ) for all x , y X . Similarly, we can verify that A I ( 0 ) A I ( x ) A I ( x y ) A I ( y ) for all x , y X . Now, suppose that A F ( 0 ) > A F ( a ) for some a X . Then a U F ( A ; γ ) and 0 U F ( A ; γ ) by taking γ = A F ( a ) . This is impossible, and thus A F ( 0 ) A F ( x ) for all x X . Suppose there exist a 0 , b 0 X such that A F ( a 0 ) > A F ( a 0 b 0 ) A F ( b 0 ) , and take γ : = A F ( a 0 b 0 ) A F ( b 0 ) . Then a 0 b 0 U F ( A ; γ ) , b 0 U F ( A ; γ ) , and a 0 U F ( A ; γ ) , which is a contradiction. Thus A F ( x ) A F ( x y ) A F ( y ) for all x , y X . Therefore A = ( A T , A I , A F ) satisfies Equation (20). ☐
Lemma 2.
Every ( , ) -neutrosophic ideal A = ( A T , A I , A F ) of a B C K / B C I -algebra X satisfies
( x , y X ) x y A T ( x ) A T ( y ) , A I ( x ) A I ( y ) , A F ( x ) A F ( y ) .
Proof. 
Let x , y X be such that x y . Then x y = 0 , and thus
A T ( x ) A T ( x y ) A T ( y ) = A T ( 0 ) A T ( y ) = A T ( y ) , A I ( x ) A I ( x y ) A I ( y ) = A I ( 0 ) A I ( y ) = A I ( y ) , A F ( x ) A F ( x y ) A F ( y ) = A F ( 0 ) A F ( y ) = A F ( y ) ,
by Equation (20). This completes the proof. ☐
Theorem 8.
A NS A = ( A T , A I , A F ) in a B C K -algebra X is an ( , ) -neutrosophic ideal of X if and only if A = ( A T , A I , A F ) satisfies
( x , y , z X ) x y z A T ( x ) A T ( y ) A T ( z ) A I ( x ) A I ( y ) A I ( z ) A F ( x ) A F ( y ) A F ( z )
Proof. 
Let A = ( A T , A I , A F ) be an ( , ) -neutrosophic ideal of X, and let x , y , z X be such that x y z . Using Theorem 7 and Lemma 2, we have
A T ( x ) A T ( x y ) A T ( y ) A T ( y ) A T ( z ) , A I ( x ) A I ( x y ) A I ( y ) A I ( y ) A I ( z ) , A F ( x ) A F ( x y ) A F ( y ) A F ( y ) A F ( z ) .
Conversely, assume that A = ( A T , A I , A F ) satisfies Equation (22). Because 0 x x for all x X , it follows from Equation (22) that
A T ( 0 ) A T ( x ) A T ( x ) = A T ( x ) , A I ( 0 ) A I ( x ) A I ( x ) = A I ( x ) , A F ( 0 ) A F ( x ) A F ( x ) = A F ( x ) ,
for all x X . Because x ( x y ) y for all x , y X , we have
A T ( x ) A T ( x y ) A T ( y ) , A I ( x ) A I ( x y ) A I ( y ) , A F ( x ) A F ( x y ) A F ( y ) ,
for all x , y X by Equation (22). It follows from Theorem 7 that A = ( A T , A I , A F ) is an ( , ) -neutrosophic ideal of X. ☐
Theorem 9.
If A = ( A T , A I , A F ) is an ( , ) -neutrosophic ideal of a B C K / B C I -algebra X, then the lower neutrosophic Φ -subsets of X are I-energetic subsets of X where Φ { T , I , F } .
Proof. 
Let x , a , u X , α , β ( 0 , 1 ] , and γ [ 0 , 1 ) be such that x L T ( A ; α ) , a L I ( A ; β ) , and u L F ( A ; γ ) . Using Theorem 7, we have
α A T ( x ) A T ( x y ) A T ( y ) , β A I ( a ) A I ( a b ) A I ( b ) , γ A F ( u ) A F ( u v ) A F ( v ) ,
for all y , b , v X . It follows that
A T ( x y ) α or A T ( y ) α , that is , x y L T ( A ; α ) or y L T ( A ; α ) ;
A I ( a b ) β or A I ( b ) β , that is , a b L T ( A ; β ) or b L T ( A ; β ) ;
and
A F ( u v ) γ or A F ( v ) γ , that is , u v L T ( A ; γ ) or v L T ( A ; γ ) .
Hence { y , x y } L T ( A ; α ) , { b , a b } L I ( A ; β ) , and { v , u v } L F ( A ; γ ) are nonempty, and therefore L T ( A ; α ) , L I ( A ; β ) and L F ( A ; γ ) are I-energetic subsets of X. ☐
Corollary 2.
If A = ( A T , A I , A F ) is an ( , ) -neutrosophic ideal of a B C K / B C I -algebra X, then the strong lower neutrosophic Φ -subsets of X are I-energetic subsets of X where Φ { T , I , F } .
Proof. 
Straightforward. ☐
Theorem 10.
Let ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) is an ( , ) -neutrosophic ideal of a B C K -algebra X, then
(1)
the (strong) upper neutrosophic Φ -subsets of X are right stable where Φ { T , I , F } ;
(2)
the (strong) lower neutrosophic Φ -subsets of X are right vanished where Φ { T , I , F } .
Proof. 
(1) Let x X , a U T ( A ; α ) , b U I ( A ; β ) , and c U F ( A ; γ ) . Then A T ( a ) α , A I ( b ) β , and A F ( c ) γ . Because a x a , b x b , and c x c , it follows from Lemma 2 that A T ( a x ) A T ( a ) α , A I ( b x ) A I ( b ) β , and A F ( c x ) A F ( c ) γ ; that is, a x U T ( A ; α ) , b x U I ( A ; β ) , and c x U F ( A ; γ ) . Hence the upper neutrosophic Φ -subsets of X are right stable where Φ { T , I , F } . Similarly, the strong upper neutrosophic Φ -subsets of X are right stable where Φ { T , I , F } .
(2) Assume that x y L T ( A ; α ) , a b L I ( A ; β ) , and c d L F ( A ; γ ) for any x , y , a , b , c , d X . Then A T ( x y ) α , A I ( a b ) β , and A F ( c d ) γ . Because x y x , a b a , and c d c , it follows from Lemma 2 that α A T ( x y ) A T ( x ) , β A I ( a b ) A I ( a ) , and γ A F ( c d ) A F ( c ) ; that is, x L T ( A ; α ) , a L I ( A ; β ) , and c L F ( A ; γ ) . Therefore the lower neutrosophic Φ -subsets of X are right vanished where Φ { T , I , F } . In a similar way, we know that the strong lower neutrosophic Φ -subsets of X are right vanished where Φ { T , I , F } . ☐
Definition 5.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . Then ( α , β , γ ) is called a neutrosophic permeable I-value for A = ( A T , A I , A F ) if the following assertion is valid:
( x , y X ) x U T ( A ; α ) A T ( x y ) A T ( y ) α , x U I ( A ; β ) A I ( x y ) A I ( y ) β , x U F ( A ; γ ) A F ( x y ) A F ( y ) γ .
Example 4.
(1) In Example 2, ( α , β , γ ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) .
(2) Consider a B C I -algebra X = { 0 , 1 , a , b , c } with the binary operation * that is given in Table 7 (see [14]).
Let A = ( A T , A I , A F ) be a NS in X that is given in Table 8.
It is routine to check that ( α , β , γ ) ( 0.33 , 1 ] × ( 0.38 , 1 ] × [ 0 , 0.77 ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) .
Lemma 3.
If a NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X satisfies the condition of Equation (14), then
( x X ) A T ( 0 ) A T ( x ) , A I ( 0 ) A I ( x ) , A F ( 0 ) A F ( x ) .
Proof. 
Straightforward. ☐
Theorem 11.
If a NS A = ( A T , A I , A F ) in a B C K -algebra X satisfies the condition of Equation (14), then every neutrosophic permeable I-value for A = ( A T , A I , A F ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) .
Proof. 
Let ( α , β , γ ) be a neutrosophic permeable I-value for A = ( A T , A I , A F ) . Let x , y , a , b , u , v X be such that x y U T ( A ; α ) , a b U I ( A ; β ) , and u v U F ( A ; γ ) . It follows from Equations (23), (3), (III), and (V) and Lemma 3 that
α A T ( ( x y ) x ) A T ( x ) = A T ( ( x x ) y ) A T ( x ) = A T ( 0 y ) A T ( x ) = A T ( 0 ) A T ( x ) = A T ( x ) ,
β A I ( ( a b ) a ) A I ( a ) = A I ( ( a a ) b ) A I ( a ) = A I ( 0 b ) A I ( a ) = A I ( 0 ) A I ( a ) = A I ( a ) ,
and
γ A F ( ( u v ) u ) A F ( u ) = A F ( ( u u ) v ) A F ( u ) = A F ( 0 v ) A F ( u ) = A F ( 0 ) A F ( u ) = A F ( u ) .
Hence A T ( x ) A T ( y ) A T ( x ) α , A I ( a ) A I ( b ) A I ( a ) β , and A F ( u ) A F ( v ) A F ( u ) γ . Therefore ( α , β , γ ) is a neutrosophic permeable S-value for A = ( A T , A I , A F ) . ☐
Given a NS A = ( A T , A I , A F ) in a B C K / B C I -algebra X, any upper neutrosophic Φ -subsets of X may not be I-energetic where Φ { T , I , F } , as seen in the following example.
Example 5.
Consider a B C K -algebra X = { 0 , 1 , 2 , 3 , 4 } with the binary operation * that is given in Table 9 (see [14]).
Let A = ( A T , A I , A F ) be a NS in X that is given in Table 10.
Then U T ( A ; 0.6 ) = { 0 , 2 } , U I ( A ; 0.7 ) = { 0 , 2 } , and U F ( A ; 0.4 ) = { 0 , 2 } . Because 2 { 0 , 2 } and { 1 , 2 1 } { 0 , 2 } = , we know that { 0 , 2 } is not an I-energetic subset of X.
We now provide conditions for the upper neutrosophic Φ -subsets to be I-energetic where Φ { T , I , F } .
Theorem 12.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If ( α , β , γ ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) , then the upper neutrosophic Φ -subsets of X are I-energetic subsets of X where Φ { T , I , F } .
Proof. 
Let x , a , u X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] such that x U T ( A ; α ) , a U I ( A ; β ) , and u U F ( A ; γ ) . Because ( α , β , γ ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) , it follows from Equation (23) that
A T ( x y ) A T ( y ) α , A I ( a b ) A I ( b ) β , and A F ( u v ) A F ( v ) γ
for all y , b , v X . Hence
A T ( x y ) α or A T ( y ) α , that is , x y U T ( A ; α ) or y U T ( A ; α ) ;
A I ( a b ) β or A I ( b ) β , that is , a b U I ( A ; β ) or b U I ( A ; β ) ;
and
A F ( u v ) γ or A F ( v ) γ , that is , u v U F ( A ; γ ) or v U F ( A ; γ ) .
Hence { y , x y } U T ( A ; α ) , { b , a b } U I ( A ; β ) , and { v , u v } U F ( A ; γ ) are nonempty, and therefore the upper neutrosophic Φ -subsets of X are I-energetic subsets of X where Φ { T , I , F } . ☐
Theorem 13.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the following condition:
( x , y X ) A T ( x ) A T ( x y ) A T ( y ) A I ( x ) A I ( x y ) A I ( y ) A F ( x ) A F ( x y ) A F ( y ) ,
then ( α , β , γ ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) .
Proof. 
Let x , a , u X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] such that x U T ( A ; α ) , a U I ( A ; β ) , and u U F ( A ; γ ) . Using Equation (25), we obtain
α A T ( x ) A T ( x y ) A T ( y ) , β A I ( a ) A I ( a b ) A I ( b ) , γ A F ( u ) A F ( u v ) A F ( v ) ,
for all y , b , v X . Therefore ( α , β , γ ) is a neutrosophic permeable I-value for A = ( A T , A I , A F ) . ☐
Combining Theorems 12 and 13, we have the following corollary.
Corollary 3.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the condition of Equation (25), then the upper neutrosophic Φ -subsets of X are I-energetic subsets of X where Φ { T , I , F } .
Definition 6.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . Then ( α , β , γ ) is called a neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) if the following assertion is valid:
( x , y X ) x L T ( A ; α ) A T ( x y ) A T ( y ) α , x L I ( A ; β ) A I ( x y ) A I ( y ) β , x L F ( A ; γ ) A F ( x y ) A F ( y ) γ .
Theorem 14.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the condition of Equation (19), then ( α , β , γ ) is a neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) .
Proof. 
Let x , a , u X be such that x L T ( A ; α ) , a L I ( A ; β ) , and u L F ( A ; γ ) . Then
A T ( x y ) A T ( y ) A T ( x ) α , A I ( a b ) A I ( b ) A I ( a ) β , A F ( u v ) A F ( v ) A F ( u ) γ ,
for all y , b , v X by Equation (20). Hence ( α , β , γ ) is a neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) . ☐
Theorem 15.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If ( α , β , γ ) is a neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) , then the lower neutrosophic Φ -subsets of X are I-energetic where Φ { T , I , F } .
Proof. 
Let x L T ( A ; α ) , a L I ( A ; β ) , and u L F ( A ; γ ) . Then A T ( x y ) A T ( y ) α , A I ( a b ) A I ( b ) β , and A F ( u v ) A F ( v ) γ for all y , b , v X by Equation (26). It follows that
A T ( x y ) α or A T ( y ) α , that is , x y L T ( A ; α ) or y L T ( A ; α ) ;
A I ( a b ) β or A I ( b ) β , that is , a b L I ( A ; β ) or b L I ( A ; β ) ;
and
A F ( u v ) γ or A F ( v ) γ , that is , u v L F ( A ; γ ) or v L F ( A ; γ ) .
Hence { y , x y } L T ( A ; α ) , { b , a b } L I ( A ; β ) and { v , u v } L F ( A ; γ ) are nonempty, and therefore the lower neutrosophic Φ -subsets of X are I-energetic where Φ { T , I , F } . ☐
Combining Theorems 14 and 15, we obtain the following corollary.
Corollary 4.
Let A = ( A T , A I , A F ) be a NS in a B C K / B C I -algebra X and ( α , β , γ ) Λ T × Λ I × Λ F , where Λ T , Λ I , and Λ F are subsets of [ 0 , 1 ] . If A = ( A T , A I , A F ) satisfies the condition of Equation (19), then the lower neutrosophic Φ -subsets of X are I-energetic where Φ { T , I , F } .
Theorem 16.
If A = ( A T , A I , A F ) is an ( , ) -neutrosophic subalgebra of a B C K -algebra X, then every neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) .
Proof. 
Let ( α , β , γ ) be a neutrosophic anti-permeable I-value for A = ( A T , A I , A F ) . Let x , y , a , b , u , v X be such that x y L T ( A ; α ) , a b L I ( A ; β ) , and u v L F ( A ; γ ) . It follows from Equations (26), (3), (III), and (V) and Proposition 1 that
α A T ( ( x y ) x ) A T ( x ) = A T ( ( x x ) y ) A T ( x ) = A T ( 0 y ) A T ( x ) = A T ( 0 ) A T ( x ) = A T ( x ) ,
β A I ( ( a b ) a ) A I ( a ) = A I ( ( a a ) b ) A I ( a ) = A I ( 0 b ) A I ( a ) = A I ( 0 ) A I ( a ) = A I ( a ) ,
and
γ A F ( ( u v ) u ) A F ( u ) = A F ( ( u u ) v ) A F ( u ) = A F ( 0 v ) A F ( u ) = A F ( 0 ) A F ( u ) = A F ( u ) .
Hence A T ( x ) A T ( y ) A T ( x ) α , A I ( a ) A I ( b ) A I ( a ) β , and A F ( u ) A F ( v ) A F ( u ) γ . Therefore ( α , β , γ ) is a neutrosophic anti-permeable S-value for A = ( A T , A I , A F ) . ☐

4. Conclusions

Using the notions of subalgebras and ideals in B C K / B C I -algebras, Jun et al. [8] introduced the notions of energetic subsets, right vanished subsets, right stable subsets, and (anti-)permeable values in B C K / B C I -algebras, as well as investigated relations between these sets. As a more general platform that extends the concepts of classic and fuzzy sets, intuitionistic fuzzy sets, and interval-valued (intuitionistic) fuzzy sets, the notion of NS theory has been developed by Smarandache (see [1,2]) and has been applied to various parts: pattern recognition, medical diagnosis, decision-making problems, and so on (see [3,4,5,6]). In this article, we have introduced the notions of neutrosophic permeable S-values, neutrosophic permeable I-values, ( , ) -neutrosophic ideals, neutrosophic anti-permeable S-values, and neutrosophic anti-permeable I-values, which are motivated by the idea of subalgebras (s-values) and ideals (I-values), and have investigated their properties. We have considered characterizations of ( , ) -neutrosophic ideals and have discussed conditions for the lower (upper) neutrosophic Φ -subsets to be S- and I-energetic. We have provided conditions for a triple ( α , β , γ ) of numbers to be a neutrosophic (anti-)permeable S- or I-value, and have considered conditions for the upper (lower) neutrosophic Φ -subsets to be right stable (right vanished) subsets. We have established relations between neutrosophic (anti-)permeable S- and I-values.

Author Contributions

Y.B.J. and S.-Z.S. initiated the main idea of this work and wrote the paper. F.S. and H.B. performed the finding of the examples and checking of the contents. All authors conceived and designed the new definitions and results and read and approved the final manuscript for submission.

Funding

This research received no external funding.

Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability; American Reserch Press: Rehoboth, NM, USA, 1999. [Google Scholar]
  2. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
  3. Garg, H.; Nancy. Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information 2017, 8, 126. [Google Scholar] [CrossRef]
  4. Garg, H.; Nancy. Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Appl. Intell. 2017. [Google Scholar] [CrossRef]
  5. Garg, H.; Nancy. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Humaniz. Comput. 2018. [Google Scholar] [CrossRef]
  6. Nancy; Garg, H. Novel single-valued neutrosophic aggregated operators under Frank norm operation and its application to decision-making process. Int. J. Uncertain. Quantif. 2016, 6, 361–375. [Google Scholar] [CrossRef]
  7. Jun, Y.B. Neutrosophic subalgebras of several types in BCK/BCI-algebras. Ann. Fuzzy Math. Inform. 2017, 14, 75–86. [Google Scholar]
  8. Jun, Y.B.; Ahn, S.S.; Roh, E.H. Energetic subsets and permeable values with applications in BCK/BCI-algebras. Appl. Math. Sci. 2013, 7, 4425–4438. [Google Scholar] [CrossRef]
  9. Jun, Y.B.; Smarandache, F.; Bordbar, H. Neutrosophic N -structures applied to BCK/BCI-algebras. Informations 2017, 8, 128. [Google Scholar] [CrossRef]
  10. Jun, Y.B.; Smarandache, F.; Song, S.Z.; Khan, M. Neutrosophic positive implicative N -ideals in BCK-algebras. Axioms 2018, 7, 3. [Google Scholar] [CrossRef]
  11. Öztürk, M.A.; Jun, Y.B. Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points. J. Int. Math. Virtual Inst. 2018, 8, 1–17. [Google Scholar]
  12. Song, S.Z.; Smarandache, F.; Jun, Y.B. Neutrosophic commutative N -ideals in BCK-algebras. Information 2017, 8, 130. [Google Scholar] [CrossRef]
  13. Huang, Y.S. BCI-Algebra; Science Press: Beijing, China, 2006. [Google Scholar]
  14. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoon Sa Co.: Seoul, Korea, 1994. [Google Scholar]
Table 1. Cayley table for the binary operation “*”.
Table 1. Cayley table for the binary operation “*”.
*01234
000000
110000
221001
332102
441110
Table 2. Tabulation representation of A = ( A T , A I , A F ) .
Table 2. Tabulation representation of A = ( A T , A I , A F ) .
X A T ( x ) A I ( x ) A F ( x )
0 0.6 0.8 0.2
1 0.4 0.5 0.7
2 0.4 0.5 0.6
3 0.4 0.5 0.5
4 0.7 0.8 0.2
Table 3. Cayley table for the binary operation “*”.
Table 3. Cayley table for the binary operation “*”.
*01234
000000
110110
222020
333303
444440
Table 4. Tabulation representation of A = ( A T , A I , A F ) .
Table 4. Tabulation representation of A = ( A T , A I , A F ) .
X A T ( x ) A I ( x ) A F ( x )
0 0.2 0.3 0.7
1 0.6 0.4 0.6
2 0.5 0.3 0.4
3 0.4 0.8 0.5
4 0.7 0.6 0.2
Table 5. Cayley table for the binary operation “*”.
Table 5. Cayley table for the binary operation “*”.
*01234
000000
110010
221020
333303
444440
Table 6. Tabulation representation of A = ( A T , A I , A F ) .
Table 6. Tabulation representation of A = ( A T , A I , A F ) .
X A T ( x ) A I ( x ) A F ( x )
0 0.7 0.6 0.4
1 0.4 0.5 0.6
2 0.4 0.5 0.6
3 0.5 0.2 0.7
4 0.3 0.3 0.9
Table 7. Cayley table for the binary operation “*”.
Table 7. Cayley table for the binary operation “*”.
*01abc
000abc
110abc
aaa0cb
bbbc0a
cccba0
Table 8. Tabulation representation of A = ( A T , A I , A F ) .
Table 8. Tabulation representation of A = ( A T , A I , A F ) .
X A T ( x ) A I ( x ) A F ( x )
0 0.33 0.38 0.77
1 0.44 0.48 0.66
a 0.55 0.68 0.44
b 0.66 0.58 0.44
c 0.66 0.68 0.55
Table 9. Cayley table for the binary operation “*”.
Table 9. Cayley table for the binary operation “*”.
*01234
000000
110000
221010
331100
442120
Table 10. Tabulation representation of A = ( A T , A I , A F ) .
Table 10. Tabulation representation of A = ( A T , A I , A F ) .
X A T ( x ) A I ( x ) A F ( x )
0 0.75 0.73 0.34
1 0.53 0.45 0.58
2 0.67 0.86 0.34
3 0.53 0.56 0.58
4 0.46 0.56 0.66

Share and Cite

MDPI and ACS Style

Jun, Y.B.; Smarandache, F.; Song, S.-Z.; Bordbar, H. Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras. Mathematics 2018, 6, 74. https://doi.org/10.3390/math6050074

AMA Style

Jun YB, Smarandache F, Song S-Z, Bordbar H. Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras. Mathematics. 2018; 6(5):74. https://doi.org/10.3390/math6050074

Chicago/Turabian Style

Jun, Young Bae, Florentin Smarandache, Seok-Zun Song, and Hashem Bordbar. 2018. "Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras" Mathematics 6, no. 5: 74. https://doi.org/10.3390/math6050074

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop