State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms
Abstract
:1. Introduction
- -
- They can be used for storing wind and solar power for various household applications, whether on a small or large scale, and can operate in off-grid or grid-connected modes.
- -
- Peak shaving is another application where energy storage systems can help reduce the power demand of industries.
- -
- Energy storage systems can also provide charging for EVs, which helps reduce the overall power demand.
- -
- By reducing the need for large cables, energy storage systems can help to improve the capability and stability of a grid.
- -
- An energy storage system can also function as a battery farm, enabling electricity trading with electricity companies.
- -
- SLB-based energy storage systems can provide financial benefits to end-users, making renewable energy more affordable and desirable.
2. Methodology
2.1. Experimental Analysis
2.2. Modelling
2.2.1. NAR
2.2.2. Holt–Winters
3. Results and Discussion
3.1. NAR Algorithm Prediction
3.2. Holt–Winters Algorithm Prediction
3.3. Comparison of the Two Algorithms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salek, F.; Eshghi, H.; Zamen, M.; Ahmadi, M.H. Energy and exergy analysis of an atmospheric water generator integrated with the compound parabolic collector with storage tank in various climates. Energy Rep. 2022, 8, 2401–2412. [Google Scholar] [CrossRef]
- Cui, C.; Zou, Y.; Wei, L.; Wang, Y. Evaluating combination models of solar irradiance on inclined surfaces and forecasting photovoltaic power generation. IET Smart Grid 2019, 2, 123–130. [Google Scholar] [CrossRef]
- Obeidat, F. A comprehensive review of future photovoltaic systems. Sol. Energy 2018, 163, 545–551. [Google Scholar] [CrossRef]
- Mohamed, A.A.R.; Morrow, D.J.; Best, R.J.; Cupples, A.; Bailie, I.; Pollock, J. Distributed battery energy storage systems operation framework for grid power levelling in the distribution networks. IET Smart Grid 2021, 4, 582–598. [Google Scholar] [CrossRef]
- Campana, P.E.; Cioccolanti, L.; François, B.; Jurasz, J.; Zhang, Y.; Varini, M.; Stridh, B.; Yan, J. Li-ion batteries for peak shaving, price arbitrage, and photovoltaic self-consumption in commercial buildings: A Monte Carlo Analysis. Energy Convers. Manag. 2021, 234, 113889. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach. Energy Build. 2019, 186, 339–354. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Del Campo, F.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M. Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles. J. Energy Storage 2019, 25, 100845. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, Y.; Kang, L.; Liu, Y. Determination of retirement points by using a multi-objective optimization to compromise the first and second life of electric vehicle batteries. J. Clean. Prod. 2020, 275, 123128. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Hegazy, O.; Omar, N.; Trad, K.; De Breucker, S.; Van Den Bossche, P.; Van Mierlo, J. Design and analysis of generic energy management strategy for controlling second-life battery systems in stationary applications. Energies 2016, 9, 889. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A. A review of the complexities of applying second life electric car batteries on energy businesses. In Proceedings of the Energy System Conference, London, UK, 24–25 June 2014. [Google Scholar]
- Braco, E.; San Martín, I.; Berrueta, A.; Sanchis, P.; Ursúa, A. Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles. J. Energy Storage 2020, 32, 101695. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A.; Canal, C. Second life batteries lifespan: Rest of useful life and environmental analysis. J. Environ. Manag. 2019, 232, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, J.S.; Wood, E.; Pesaran, A. A second life for electric vehicle batteries: Answering questions on battery degradation and value. SAE Int. J. Mater. Manuf. 2015, 8, 544–553. [Google Scholar] [CrossRef]
- Bhatt, A.; Ongsakul, W.; Madhu, N.; Singh, J.G. Machine learning-based approach for useful capacity prediction of second-life batteries employing appropriate input selection. Int. J. Energy Res. 2021, 45, 21023–21049. [Google Scholar] [CrossRef]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.-Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. Ieee Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Sarmah, S.B.; Kalita, P.; Garg, A.; Niu X-d Zhang, X.-W.; Peng, X.; Bhattacharjee, D. A review of state of health estimation of energy storage systems: Challenges and possible solutions for futuristic applications of li-ion battery packs in electric vehicles. J. Electrochem. Energy Convers. Storage 2019, 16, 040801. [Google Scholar] [CrossRef]
- Bian, X.; Liu, L.; Yan, J.; Zou, Z.; Zhao, R. An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: Model development and validation. J. Power Sources 2020, 448, 227401. [Google Scholar] [CrossRef]
- Faraji-Niri, M.; Rashid, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques. J. Energy Storage 2023, 58, 106295. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Ran, A.; Wei, G.; Sun, H. Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation. Renew. Sustain. Energy Rev. 2023, 173, 113053. [Google Scholar] [CrossRef]
- Shu, X.; Li, G.; Zhang, Y.; Shen, J.; Chen, Z.; Liu, Y. Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles. J. Power Sources 2020, 471, 228478. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Lu, D.D.-C.; Wang, G.; He, T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Salek, F.; Resalati, S.; Babaie, M.; Henshall, P.; Morrey, D.; Yao, L. A Review of the Technical Challenges and Solutions in Maximising the Potential Use of Second Life Batteries from Electric Vehicles. Batteries 2024, 10, 79. [Google Scholar] [CrossRef]
- Clark, S.; Bleken, F.L.; Stier, S.; Flores, E.; Andersen, C.W.; Marcinek, M.; Szczesna-Chrzan, A.; Gaberscek, M.; Palacin, M.R.; Uhrin, M.; et al. Toward a unified description of battery data. Adv. Energy Mater. 2022, 12, 2102702. [Google Scholar] [CrossRef]
- Blümke, J.; Hof, H.-J. Binding the Battery to the Pass: An Approach to Trustworthy Product Life Cycle Data by Using Certificates Based on PUFs. Int. J. Adv. Secur. 2023, 16, 44–53. [Google Scholar]
- Planden, B.; Lukow, K.; Collier, K.; Morrey, D. Battery Testing Consortium:A Framework for Improvements in High-Power Battery Design. 2021. Available online: http://github.com/Oxford-Brookes-HVES/BTC (accessed on 1 December 2021).
- Nogay, H.S. Estimating the aggregated available capacity for vehicle to grid services using deep learning and Nonlinear Autoregressive Neural Network. Sustain. Energy Grids Netw. 2022, 29, 100590. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, H.; Jiang, H. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability 2022, 14, 3118. [Google Scholar] [CrossRef]
- Guo, F.; Wu, X.; Liu, L.; Ye, J.; Wang, T.; Fu, L.; Wu, Y. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network. Energy 2023, 270, 126880. [Google Scholar] [CrossRef]
- Ahmad, P.; Singh, N. Optimal Sizing of ESS in a Hybrid Wind-Diesel Power System Using NAR and NARX Model. In Proceedings of the 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Al-Hafid, M.S.; Hussein Al-maamary, G. Short term electrical load forecasting using holt-winters method. Al-Rafidain Eng. J. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Shu, X.; Shen, J.; Lei, Z.; Zhang, Y. State of health estimation for lithium-ion batteries based on hybrid attention and deep learning. Reliab. Eng. Syst. Saf. 2023, 232, 109066. [Google Scholar] [CrossRef]
- Che, Y.; Deng, Z.; Li, P.; Tang, X.; Khosravinia, K.; Lin, X.; Hu, X. State of health prognostics for series battery packs: A universal deep learning method. Energy 2022, 238, 121857. [Google Scholar] [CrossRef]
- Ma, B.; Yang, S.; Zhang, L.; Wang, W.; Chen, S.; Yang, X.; Xie, H.; Yu, H.; Wang, H.; Liu, X. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep-learning model. J. Power Sources 2022, 548, 232030. [Google Scholar] [CrossRef]
Method | Monitored SoH (from Experiments) [%] | Predicted SoH [%] | Error [%] |
---|---|---|---|
Coulomb counting | 63.85 | 69.78 | <10 |
EIS | 85 | 86.27 | <2.1 |
Neural network | 82 | 82.3 | <0.5 |
Support vector machine | 60.35 | 59.19 | <2 |
Kalman filter | 84.36 | 86.57 | <5 |
Sliding mode observer | 90.13 | 90.261 | <2.5 |
Fuzzy logic | 88 | 91.625 | 1.4–9.2 |
Equipment | Model | Calibration Date |
---|---|---|
Thermal chamber | Binder KB115 | 30 March 2021 |
Cell cycler | ARBIN LBT-21084-HC | 23 September 2021 |
Chemistry | NMC |
---|---|
Nominal voltage [V] | 3.6 |
] | 8–18 |
Nominal capacity [Ah] | 3 |
Energy density [Wh/kg] | 232 |
Power density [W/kg] | 4056 |
Parameter | Training Algorithm | Levenberg–Marquardt |
---|---|---|
Capacity fade | Layer size | 8 |
Time delay | 5 | |
Training Mean Squared Error | 4.75 × 10−6 | |
Training R-square | 0.99 | |
Observations | 41 | |
Test Mean Squared Error | 2.17 × 10−5 | |
Test R-square | 0.99 | |
Internal resistance increment | Layer size | 19 |
Time delay | 4 | |
Training Mean Squared Error | 1.18 × 10−7 | |
Training R-square | 0.9864 | |
Observations | 401 | |
Test Mean Squared Error | 1.64 × 10−7 | |
Test R-square | 0.9863 |
Capacity | Internal Resistance | |
---|---|---|
Alpha | 0.9 | 0.9 |
Beta | 0.9 | 0.9 |
Gamma | 0 | 0.1 |
Forecast start | 200 | 200 |
R-square | 98.2% | 99.22% |
Confidence interval | 11% | 12% |
Seasonality | 1 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salek, F.; Resalati, S.; Azizi, A.; Babaie, M.; Henshall, P.; Morrey, D. State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms. Mathematics 2024, 12, 1051. https://doi.org/10.3390/math12071051
Salek F, Resalati S, Azizi A, Babaie M, Henshall P, Morrey D. State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms. Mathematics. 2024; 12(7):1051. https://doi.org/10.3390/math12071051
Chicago/Turabian StyleSalek, Farhad, Shahaboddin Resalati, Aydin Azizi, Meisam Babaie, Paul Henshall, and Denise Morrey. 2024. "State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms" Mathematics 12, no. 7: 1051. https://doi.org/10.3390/math12071051
APA StyleSalek, F., Resalati, S., Azizi, A., Babaie, M., Henshall, P., & Morrey, D. (2024). State of Health Prediction of Electric Vehicles’ Retired Batteries Based on First-Life Historical Degradation Data Using Predictive Time-Series Algorithms. Mathematics, 12(7), 1051. https://doi.org/10.3390/math12071051