Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. Exploratory Data Analysis Results
3.2. Model Results
4. Discussion
5. Conclusions
- The model simulation results with the application of the rsq_hourly objective function were extensively better than the model performance with rsq_daily objective function because the rsq_hourly objective function seeks to maximize the R2 value for each hour represented in the data (which in this case is hourly flood data with limited data points). In contrast, the rsq_daily objective function maximizes R2 for each day represented in the data producing parameters accordingly. This provides the rsq_hourly measure an advantage over the rsq_daily objective function, such that in the present study, the optimization process with the utilization of the rsq_hourly measure considers ‘more data’ than its rsq_daily counterpart;
- The IHACRES model struggled to satisfactorily simulate the flood peaks with a somewhat more accurate estimation of the flood at the start and end of each event, notwithstanding the objective function employed and thus could be considered a general model weakness in this study;
- The IHACRES model implementation performed in simulating the selected flood events demonstrated the overall capability of the model to satisfactorily simulate flood events under changing land-use situations in a data-scarce semi-arid region with highly accurate parameters based on the parameter uncertainty results. This, therefore, endorses the use of data-driven models as hydrological models in data-scarce regions where physical models are inapplicable;
- Finally, it is recommended that possible changes in time aggregation of objective functions be incorporated into models to account for modeling flood events with limited data like the Zhidan study area to make flood simulations in regions like this a possibility;
- Further research could also be conducted with flood event data from other regions with data limitation constraints using time aggregated objective functions to compare the estimated R2 and parameter results; performing these comparisons across different climatic settings to investigate the behavior of objective function aggregations on data with different hydrological characteristics, however with more emphasis on semi-arid regions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Croke, B.; Jakeman, A. Use of the IHACRES rainfall-runoff model in arid and semi arid regions. In Hydrological Modelling in Arid and Semi-Arid Areas; Wheater, H., Sorooshian, S., Sharma, K.D., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 41–48. ISBN 978-0-521-86918-8. [Google Scholar]
- Chang, F.J.; Chiang, Y.M.; Chang, L.C. Multi-step-ahead neural networks for flood forecasting. Hydrol. Sci. J. 2007, 52, 114–130. [Google Scholar] [CrossRef]
- Elsafi, S.H. Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Eng. J. 2014, 53, 655–662. [Google Scholar] [CrossRef]
- Cannon, A.J.; Whitfield, P.H. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol. 2002, 259, 136–151. [Google Scholar] [CrossRef]
- Hsu, K.; Gupta, H.V.; Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Nawaz, N.; Harun, S.; Talei, A.; Chang, T.K. Event-based rainfall-runoff modeling using adaptive network-based fuzzy inference system. J. Teknol. 2016, 78, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Jayawardena, A.W.; Perera, E.D.P.; Zhu, B.; Amarasekara, J.D.; Vereivalu, V. A comparative study of fuzzy logic systems approach for river discharge prediction. J. Hydrol. 2014, 514, 85–101. [Google Scholar] [CrossRef]
- Remesan, R.; Mathew, J. Hydrological Data Driven Modelling: A Case Study Approach; Springer International Publishing: Cham, Switzerland, 2015; ISBN 9783319092355. [Google Scholar]
- Solomatine, D.; See, L.M.; Abrahart, R.J. Data-Driven Modelling: Concepts, Approaches and Experiences. In Practical Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–30. [Google Scholar]
- Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform. 2008, 10, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Oyebode, O.; Otieno, F.; Adeyemo, J. Review of three data-driven modelling techniques for hydrological modelling and forecasting. Fresenius Environ. Bull. 2014, 23, 1443–1454. [Google Scholar]
- Xu, C.-Y.; Xiong, L.; Singh, V.P. Black-Box Hydrological Models. In Handbook of Hydrometeorological Ensemble Forecasting; Duan, Q., Pappenberger, F., Wood, A., Cloke, H.L., Schaake, J., Eds.; Springer: Heidelberg, Germany, 2017; pp. 1–48. [Google Scholar]
- Campolo, M.; Andreussi, P.; Soldati, A. River flood forecasting with a neural network model. Water Resour. Res. 1999, 35, 1191–1197. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Jakeman, A.J. A catchment moisture deficit module for the IHACRES rainfall-runoff model. Environ. Model. Softw. 2004, 19, 1–5. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Littlewood, I.G.; Whitehead, P.G. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 1990, 117, 275–300. [Google Scholar] [CrossRef]
- Croke, B.; Andrews, F.; Jakeman, A.J.; Cuddy, S.M.; Luddy, A. IHACRES Classic Plus: A redesign of the IHACRES rainfall-runoff model. Environ. Model. Softw. 2006, 21, 426–427. [Google Scholar] [CrossRef]
- Dye, P.J.; Croke, B.F.W. Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environ. Model. Softw. 2003, 18, 705–712. [Google Scholar] [CrossRef]
- Hansen, D.P.; Ye, W.; Jakeman, A.J.; Cooke, R.; Sharma, P. Analysis of the effect of rainfall and streamflow data quality and catchment dynamics on streamflow prediction using the rainfall-runoff model IHACRES. Environ. Softw. 1996, 11, 193–202. [Google Scholar] [CrossRef]
- Ye, W.; Bates, B.C.; Viney, N.R.; Sivapalan, M.; Jakeman, A.J. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 1997, 33, 153–166. [Google Scholar] [CrossRef]
- Abushandi, E.; Merkel, B. Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan. Water Resour. Manag. 2013, 27, 2391–2409. [Google Scholar] [CrossRef]
- Kan, G.; Yao, C.; Li, Q.; Li, Z.; Yu, Z.; Liu, Z.; Ding, L.; He, X.; Liang, K. Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stoch. Environ. Res. Risk Assess. 2015, 29, 1345–1370. [Google Scholar] [CrossRef]
- Littlewood, I.G.; Croke, B.F.W. Data time-step dependency of conceptual rainfall-streamflow model parameters: An empirical study with implications for regionalisation. Hydrol. Sci. J. 2008, 53, 685–695. [Google Scholar] [CrossRef]
- Reynolds, J.E.; Halldin, S.; Xu, C.Y.; Seibert, J.; Kauffeldt, A. Sub-daily runoff predictions using parameters calibrated on the basis of data with a daily temporal resolution. J. Hydrol. 2017, 550, 399–411. [Google Scholar] [CrossRef]
- Bennett, J.C.; Robertson, D.E.; Ward, P.G.D.; Hapuarachchi, H.A.P.; Wang, Q.J. Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments. Environ. Model. Softw. 2016, 76, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Littlewood, I.G.; Young, P.C.; Croke, B.F.W. Preliminary comparison of two methods for identifying rainfall-streamflow model parameters insensitive to data time-step: The Wye at Cefn Berwyn, Plynlimon, Wales. In Proceedings of the British Hydrological Society’s Third International Symposium, Role of Hydrology in Managing the Consequences of a Changing Global Environment, Newcastle University; Walshe, C., Ed.; U.K. British Hydrological Society, University of Newcastle: Callaghan, Australia, 2010; pp. 539–543. [Google Scholar]
- Littlewood, I.G.; Croke, B.F.W. Effects of data time-step on the accuracy of calibrated rainfall-streamflow model parameters: Practical aspects of uncertainty reduction. Hydrol. Res. 2013, 44, 430–440. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Servat, E.; Dezzetter, A. Selection of calibration objective functions in the context of rainfall-ronoff modelling in a Sudanese savannah area. Hydrol. Sci. J. 1991, 36, 307–330. [Google Scholar] [CrossRef]
- Yew Gan, T.; Dlamini, E.M.; Biftu, G.F. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J. Hydrol. 1997, 192, 81–103. [Google Scholar] [CrossRef]
- Jie, M.X.; Chen, H.; Xu, C.Y.; Zeng, Q.; Tao, X.E. A comparative study of different objective functions to improve the flood forecasting accuracy. Hydrol. Res. 2016, 47, 718–735. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- ASCE. Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 1993, 119, 429–442. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Viney, N.R.; Perraud, J.M.; Vaze, J. The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. In Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 3421–3427. [Google Scholar]
- Miao, Q.; Yang, D.; Yang, H.; Li, Z. Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model. J. Hydrol. 2016, 541, 371–386. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Liu, Z.; Zhang, Y. TOPKAPI-based flood simulation in semi-humid and semi-arid regions. Water Power 2016, 42, 18–22. [Google Scholar]
- Li, Z.; Jiang, T.; Huang, P.; Liu, Z.; An, D.; Yao, C.; Ju, X. Impact and analysis of watershed precipitation and topography characteristics on model simulation results. Adv. Water Sci. 2015, 26, 473–480. [Google Scholar]
- Huang, P.; Li, Z.; Chen, J.; Li, Q.; Yao, C. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments. J. Hydrol. 2016, 542, 292–303. [Google Scholar] [CrossRef]
- Carcano, E.C.; Bartolini, P.; Muselli, M.; Piroddi, L. Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J. Hydrol. 2008, 362, 291–307. [Google Scholar] [CrossRef]
- Post, D.A.; Jakeman, A.J. Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrol. Process. 1996, 10, 877–892. [Google Scholar] [CrossRef]
- Evans, J.P.; Jakeman, A.J. Development of a simple, catchment-scale, rainfall-evapotranspiration-runoff model. Environ. Model. Softw. 1998, 13, 385–393. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Hornberger, G.M. How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 1993, 29, 2637–2649. [Google Scholar] [CrossRef]
- Andrews, F. Hydromad Tutorial. Available online: http://hydromad.catchment.org/downloads/tutorial.pdf (accessed on 10 January 2018).
- Andrews, F.T.; Croke, B.F.W.; Jakeman, A.J. An open software environment for hydrological model assessment and development. Environ. Model. Softw. 2011, 26, 1171–1185. [Google Scholar] [CrossRef]
- Bai, Y.; Wagener, T.; Reed, P. A top-down framework for watershed model evaluation and selection under uncertainty. Environ. Model. Softw. 2009, 24, 901–916. [Google Scholar] [CrossRef]
- Kokkonen, T.; Koivusalo, H.; Jakeman, A.; Norton, J. Construction of a degree-day snow model in the light of the “ten iterative steps in model development”. In Proceedings of the iEMSs Third Biennial Meeting: “Summit on Environmental Modelling and Software”, Burlington, VT, USA, 9–13 July 2006; Voinov, A., Jakeman, A.J., Rizzoli, A.E., Eds.; International Environmental Modelling and Software Society: Burlington, VT, USA, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- The R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 21 October 2019).
- Xie, Y. formatR: Format R Code Automatically. Available online: https://cran.r-project.org/package=formatR (accessed on 14 March 2020).
- Zeileis, A.; Grothendieck, G. zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 2005, 14, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Andrews, F. latticeExtra: Extra Graphical Utilities Based on Lattice. Available online: https://cran.r-project.org/package=latticeExtra (accessed on 14 March 2020).
- Venables, B.; Hornik, K.; Maechler, M. Polynom: A Collection of Functions to Implement a Class for Univariate Polynomial Manipulations. Available online: https://cran.r-project.org/package=polynom (accessed on 14 March 2020).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage publications: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Harrell, F.E., Jr. With Contributions from Charles Dupont and many others Hmisc: Harrell Miscellaneous. Available online: https://cran.r-project.org/package=Hmisc (accessed on 14 March 2020).
- Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Guillaume, J.; Andrews, F. Dream: DiffeRential Evolution Adaptive Metropolis. Available online: http://cran.r-project.org/package=dream (accessed on 5 March 2020).
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Ardia, D.; Mullen, K.M.; Peterson, B.G.; Ulrich, J. “DEoptim”: Differential Evolution in “R”. Available online: https://cran.r-project.org/web/packages/DEoptim/DEoptim.pdf (accessed on 5 March 2020).
- James, D.; Hornik, K. Chron: Chronological Objects which Can Handle Dates and Times. Available online: https://cran.r-project.org/package=chron (accessed on 5 March 2020).
- Andrews, F.; Guillaume, J. Hydromad: Hydrological Model Assessment and Development. Available online: http://hydromad.catchment.org/ (accessed on 5 March 2020).
- Iooss, B.; da Veiga, S.; Janon, A.; Pujol, G.; Broto, B.; Boumhaout, K.; Delage, T.; El Amri, R.; Fruth, J.; Gilquin, L.; et al. Sensitivity: Global Sensitivity Analysis of Model Outputs. Available online: https://cran.r-project.org/package=sensitivity (accessed on 5 March 2020).
- RStudio Team RStudio. New Open-Source IDE for R. Available online: https://blog.rstudio.com/2011/02/28/rstudio-new-open-source-ide-for-r/ (accessed on 21 October 2019).
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Shin, M.J.; Guillaume, J.H.A.; Croke, B.F.W.; Jakeman, A.J. Addressing ten questions about conceptual rainfall-runoff models with global sensitivity analyses in R. J. Hydrol. 2013, 503, 135–152. [Google Scholar] [CrossRef]
- van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Cunderlik, J.M.; Simonovic, S.P. Calibration, Verification, and Sensitivity Analysis of the HEC-HMS Hydrologic Model, CFCAS Project: Assessment of Water Resources Risk and Vulnerability to Changing Climatic Conditions; Department of Civil and Environmental Engineering, The University of Western Ontario: London, ON, Canada, 2004. [Google Scholar]
- Feldman, A.D. Hydrologic Modeling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2000.
- Allen, G.R.; Liu, G. IHACRES Classic: Software for the Identification of Unit Hydrographs and Component Flows. Ground Water 2011, 49, 305–308. [Google Scholar] [CrossRef]
- Finnerty, B.D.; Smith, M.B.; Seo, D.-J.J.; Koren, V.; Moglen, G.E. Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs. J. Hydrol. 1997, 203, 21–38. [Google Scholar] [CrossRef]
Year | Start Time | End Time | Number of Event Days (days) * | Number of Data Points and Time Steps (hours) | Rainfall Peak (Rpeak) (mm) | Flow Peak (Qpeak) (m3/s) |
---|---|---|---|---|---|---|
2000 | 27 July 2000 3:00:00 a.m. | 28 July 2000 12:00:00 a.m. | 0.9167 | 22 (0–21) | 2.8586 | 162 |
2002a | 8 June 2002 2:00:00 PM | 10 June 2002 2:00:00 PM | 2.0417 | 49 (0–48) | 6.7914 | 202 |
2002b | 26 June 2002 8:00:00 a.m. | 28 June 2002 8:00:00 PM | 2.5417 | 61 (0–60) | 2.8786 | 156 |
2003 | 7 August 2003 8:00:00 a.m. | 9 August 2003 5:00:00 a.m. | 1.9167 | 46 (0–45) | 1.9529 | 24.89 |
2005 | 18 July 2005 8:00:00 a.m. | 20 July 2005 8:00:00 PM | 2.5417 | 61 (0–60) | 3.5429 | 97.59 |
2006 | 5 August 2006 8:00:00 a.m. | 7 August 2006 8:00:00 a.m. | 2.0417 | 49 (0–48) | 5.9486 | 65.80 |
Year | Rsq_Daily Objective Function | Rsq_Hourly Objective Function | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | Rel. Bias | RMSE (mm/hour) | PEPF (%) | ARPE (%) | R2 | Rel. Bias | RMSE (mm/hour) | PEPF (%) | ARPE (%) | |
2000 | – | – | – | – | – | 0.5728 | 0.2780 | 0.1307 | 39.5621 | 0.2740 |
2002a | 0.3249 | −0.0036 | 0.1356 | 58.3754 | 94,207 | 0.8366 | 0.0168 | 0.0672 | 30.9741 | 1.087 |
2002b | 0.6643 | −0.0252 | 0.0618 | 50.0675 | 1.7280 | 0.6705 | −0.0119 | 0.0612 | 45.8568 | 0.5453 |
2003 | −0.2561 | −0.9102 | 0.0295 | 98.6450 | NAN * | 0.7873 | 0.1925 | 0.0122 | 23.9683 | 0.1531 |
2005 | 0.4860 | 0.2313 | 0.0511 | 59.6843 | 5.5330 | 0.5215 | 0.2116 | 0.0493 | 54.3359 | 0.0101 |
2006 | 0.7835 | 0.0349 | 0.0283 | 31.4869 | 0.1352 | 0.8491 | −0.1115 | 0.0236 | 20.8359 | 0.4330 |
Calibrated Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 2002b | 2006 | ||||||||
tw | f | scale | tau_s | v_s | tw | f | scale | tau_s | v_s | |
Rsq_daily | 30 | 4 | 0.0137 | 2.1335 | 1 | 0 | 1.3146 | 0.3587 | 2.9339 | 0.0271 |
Rsq_hourly | 22.7258 | 0.7214 | 0.1323 | 2.0703 | 0.1196 | 28.7393 | 3.9612 | 0.1774 | 1.5291 | 0.0142 |
2002b | 2006 | |||||||
---|---|---|---|---|---|---|---|---|
Rsq_Daily | Rsq_Hourly | Rsq_Daily | Rsq_Hourly | |||||
tw | 0.2837 | 0.8055 | 0.2837 | 0.8055 | 0.0164 | 0.1268 | 0.0164 | 0.1268 |
f | 0.0622 | 0.1547 | 0.0622 | 0.1547 | 0.0011 | 0.0040 | 0.0011 | 0.0040 |
scale | 0.7913 | 1.2566 | 0.7913 | 1.2566 | 0.6120 | 1.3991 | 0.6120 | 1.3991 |
tau_s | 0.2304 | 0.8443 | 0.2304 | 0.8443 | 0.0428 | 0.1492 | 0.0428 | 0.1492 |
v_s | 0.6632 | 1.1002 | 0.6632 | 1.1002 | 0.1598 | 0.5262 | 0.1598 | 0.5262 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baddoo, T.D.; Li, Z.; Guan, Y.; Boni, K.R.C.; Nooni, I.K. Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions. Int. J. Environ. Res. Public Health 2020, 17, 4132. https://doi.org/10.3390/ijerph17114132
Baddoo TD, Li Z, Guan Y, Boni KRC, Nooni IK. Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions. International Journal of Environmental Research and Public Health. 2020; 17(11):4132. https://doi.org/10.3390/ijerph17114132
Chicago/Turabian StyleBaddoo, Thelma Dede, Zhijia Li, Yiqing Guan, Kenneth Rodolphe Chabi Boni, and Isaac Kwesi Nooni. 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions" International Journal of Environmental Research and Public Health 17, no. 11: 4132. https://doi.org/10.3390/ijerph17114132
APA StyleBaddoo, T. D., Li, Z., Guan, Y., Boni, K. R. C., & Nooni, I. K. (2020). Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions. International Journal of Environmental Research and Public Health, 17(11), 4132. https://doi.org/10.3390/ijerph17114132