Integration of Forest Growth Component in the FEST-WB Distributed Hydrological Model: The Bonis Catchment Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.1.1. FEST-WB Distributed Hydrological Model
2.1.2. FOREST Module
- Light Interception
- GPP and NPP Calculation
- Modifiers Calculation
- Soil water modifier
- 2.
- Temperature modifier
- Age modifier
- 3.
- Vapor pressure modifier (Landsberg and waring-3PG)
- 4.
- CO2 modifier
- Carbon Allocation
- Total Biomass Calculation
- Mortality
- -
- The first mortality factor is due to the self-thinning (the one included in 3PG), which ensures that the mean single-tree stem biomass WS does not exceed the maximum permissible single-tree stem biomass WSx [kg·tree−1] [41].
- -
- The second mortality factor is age dependent mortality following the approach of LPJ-GUESS (SMITH) [42] with aging the plants become more susceptible to the wind, diseases, etc.
- -
- The third mortality factor is the so called the “crowding competition function”, this mortality ensures that the % of cover of pixel does not exceed 95%.
- Management Options
2.2. Model Application
2.2.1. Study Catchment Data
2.2.2. Soil Parameters
2.2.3. Model Calibration
- -
- The hydrological part: sensitivity analysis and calibration using measured runoff data.
- -
- The forest growth part: sensitivity analysis and calibration using dendrological measurements.
3. Results
3.1. Hydrological Simulations
3.1.1. Sensitivity Analysis
3.1.2. Runoff Simulations Calibration
3.2. Forest Growth Simulations
3.2.1. Sensitivity Analysis
3.2.2. Model Calibration Forest Growth Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; UNEP. The State of the World’s Forests 2020: Forests, Biodiversity and People; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Bradshaw, R.; Sykes, M. Ecosystem Dynamics: From the Past to the Future; John Wiley and Sons: Chichester, UK, 2014. [Google Scholar]
- Bauhus, J.; van der Meer, P.; Kanninen, M. (Eds.) Ecosystem Goods and Services from Plantation Forests; Routledge: London, UK, 2010. [Google Scholar]
- Thompson, I.D.; Okabe, K.; Tylianakis, J.M.; Kumar, P.; Brockerhoff, E.G.; Schellhorn, N.A.; Parrotta, J.A.; Nasi, R. Forest biodiversity and the delivery of ecosystem goods and services: Translating science into policy. Bio Sci. 2011, 61, 972–981. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar] [CrossRef]
- Decocq, G.; Andrieu, E.; Brunet, J.; Chabrerie, O.; De Frenne, P.; De Smedt, P.; Deconchat, M.; Diekmann, M.; Ehrmann, S.; Giffard, B.; et al. Ecosystem services from small forest patches in agricultural landscapes. Curr. For. Rep. 2016, 2, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuirei, A.D.; Bozzato, F.; Pretzsch, P.B.H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, T.; Seifert, S. Models for forest ecosystem management: A European perspective. Ann. Bot. 2008, 101, 1065–1087. [Google Scholar] [CrossRef]
- Porté, A.; Bartelink, H.H. Modelling mixed forest growth: A review of models for forest management. Ecol. Modell. 2002, 150, 141–188. [Google Scholar] [CrossRef]
- Dale, V.H.; Doyle, T.W.; Shugart, H.H. A comparison of tree growth models. Ecol Model. 1985, 29, 145–169. [Google Scholar] [CrossRef]
- Zhou, B.Z.; Fu, M.Y.; Xie, J.Z.; Yang, X.S.; Li, Z.C. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. (In Chinese) [Google Scholar]
- Landsberg, J.J.; Waring, R.H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H.; Coops, N.C. Performance of the forest productivity model 3-PG applied to a wide range of forest types. For. Ecol. Manag. 2003, 172, 199–214. [Google Scholar] [CrossRef]
- Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 2002, 83, 376–399. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Douinot, A.; Roux, H.; Garambois, P.-A.; Dartus, D. Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods. Hydrol. Earth Syst. Sci. 2018, 22, 5317–5340. [Google Scholar] [CrossRef] [Green Version]
- Tague, C.; Band, L.E. RHESSys: Regional Hydro-Ecologic Simulation System—An objectoriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact. 2004, 8, 1–42. [Google Scholar] [CrossRef]
- Maneta, M.P.; Silverman, N.L. A spatially distributed model to simulate water, energy and vegetation dynamics using information from Regional Climate Models. Earth Interact. 2013, 17, 1–44. [Google Scholar] [CrossRef]
- Kuppel, S.; Tetzlaff, D.; Maneta, M.P.; Soulsby, C. EcH2O-iso 1.0: Water isotopes and age tracking in a process-based, distributed ecohydrological model. Geosci. Model Dev. 2018, 11, 3045–3069. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment, part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–90. [Google Scholar] [CrossRef]
- Niu, G.Y.; Paniconi, C.; Troch, P.A.; Scott, R.L.; Durcik, M.; Zeng, X.B.; Huxman, T.; Goodrich, D.C. An integrated modelling framework of catchment- scale ecohydrological processes: 1. Model description and tests over an energy—Limited watershed. Ecohydrology 2014, 7, 427–439. [Google Scholar] [CrossRef]
- Collalti, A.; Lucia, P.; Santini, M.; Chiti, T.; Nolè, A.; Matteucci, G.; Valentini, R. A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecol Model. 2014, 272, 362–378. [Google Scholar] [CrossRef]
- Huber, M.O.; Eastaugh, C.S.; Gschwantner, T.; Hasenauer, H.; Kindermann, G.; Ledermann, T.; Lexer, M.J.; Rammer, W.; Schörghuber, S.; Sterba, H. Comparing simulations of three conceptually different forest models with National Forest Inventory data. Environ. Model. Softw. 2013, 40, 88–97. [Google Scholar] [CrossRef]
- Mendoza, A.; Jerry, V. Trends in forestry modelling. CAB Rev. 2008, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M. Real-time drought forecasting system for irrigation management. Hydrol. Earth Syst. Sci. J. 2014, 18, 3353–3366. [Google Scholar] [CrossRef] [Green Version]
- Ravazzani, G.; Corbari, C.; Ceppi, A.; Feki, M.; Mancini, M.; Ferrari, F.; Gianfreda, R.; Colombo, R.; Ginocchi, M.; Meucci, S.; et al. From (cyber) space to ground: New technologies for smart farming. Hydrol. Res. 2017, 48, 656–672. [Google Scholar] [CrossRef] [Green Version]
- Boscarello, L.; Ravazzani, G.; Cislaghi, A.; Mancin, M. Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic–climate indices. J. Hydrol. Eng. 2015, 21, 05015027. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Soil Conservation Service (SCS). Hydrology, National Engineering Handbook; Soil Conservation Service: Washington, DC, USA, 1985. [Google Scholar]
- Ravazzani, G.; Mancini, M.; Giudici, I.; Amadio, P. Effects of soil moisture parameterization on a real-time flood forecasting system based on rainfall thresholds. In Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management (Proceedings of the Symposium HS2004 at IUGG2007, Perugia, July 2007); IAHS Press: Wallingford, UK, 2007; pp. 407–416. [Google Scholar]
- Philip, J.R. Numerical solution of equations of the diffusion type with diffusivity concentration-dependent II. Aust. J. Phys. 1957, 10, 29–42. [Google Scholar]
- Green, W.H.; Ampt, G.A. Studies on soil physics I. Flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Feki, M.; Ravazzani, G.; Ceppi, A.; Milleo, G.; Mancini, M. Impact of Infiltration Process Modeling on Soil Water Content Simulations for Irrigation Management. Water 2018, 10, 850. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics, 2nd ed.; Edward Arnold: London, UK, 1990. [Google Scholar]
- Beers, T.W. Components of forest growth. J. For. 1962, 60, 245–248. [Google Scholar]
- Moser, J.W., Jr. A system of equations for the components of forest growth. In Growth Models for Tree and Stand Simulation; Fries, J., Ed.; Royal College of Forestry: Stockholm, Sweden, 1974; pp. 260–288. [Google Scholar]
- Cox, P.M.; Huntingford, C.; Harding, R.J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 1998, 212, 79–94. [Google Scholar] [CrossRef]
- Peng, C.; Liu, J.; Dang, Q.; Apps, M.J.; Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 2002, 153, 109–130. [Google Scholar] [CrossRef]
- Dingman, L.S. Physical Hydrology, 2nd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Sands, P. Adaptation of 3-PG to Novel Species: Guidelines for Data Collection and Parameter Assignment; Cooperative Research Centre for Sustainable Production Forestry: Hobart, Australia, 2004; Technical Report No. 141. [Google Scholar]
- Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 2014, 11, 2027–2054. [Google Scholar] [CrossRef] [Green Version]
- Callegari, G.; Ferrari, E.; Garì, G.; Iovino, F.; Veltri, A. Impact of thinning on the water balance of a catchment in Mediterranean environment. For. Chron. 2003, 79, 301–306. [Google Scholar] [CrossRef]
- Caloiero, T.; Biondo, C.; Callegari, G.; Collalti, A.; Froio, R.; Maesano, M.; Matteucci, M.; Pellicone, G.; Veltri, A. Results of a long-term study on an experimental watershed in southern Italy. Studii și cercetări de geografie și protecția mediului. Forum Geogr. 2016, XV, 55–65. [Google Scholar] [CrossRef]
- Ravazzani, G.; Caloiero, T.; Feki, M.; Pellicone, G. Impact of Infiltration Process Modeling on Runoff Simulations: The Bonis River Basin. Proceedings 2018, 2, 638. [Google Scholar] [CrossRef] [Green Version]
- Pellicone, G. Climate Change Mitigation by Forests: A Case Study on the Role of Management on Carbon Dynamics of a Pine Forest in South Italy. PhD Thesis, Università degli studi della Tuscia–Viterbo, Viterbo, Italy, 2018. [Google Scholar]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer parameters through infiltration experiments–BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Rojas, R. A model-independent Particle Swarm Optimisation software for model calibration. Environ. Model. Softw. 2013, 43, 5–25. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol. 1970, 27, 282–290. [Google Scholar] [CrossRef]
ID | Land Cover | Surface |
---|---|---|
(km2) | ||
1 | Artificial Laricio pine forests with Turkey Oak in subcanopy layer | 0.3872 |
2 | Low density of artificial Laricio pine forests | 0.0444 |
3 | Artificial Laricio pine degraded forests | 0.1108 |
4 | Natural and artificial Laricio pine forests (low density) | 0.258 |
5 | Natural Laricio pine forests (high density) | 0.08 |
6 | Artificial Laricio pine forests crossed by fire | 0.0256 |
7 | Chestnut coppice, Alder and poplar riparian forests, Artificial chestnut forests and mixed Laricio pine and Chestnut forests | 0.3748 |
8 | arable land | 0.0232 |
9 | bare soil and outcropping rocks | 0.0772 |
Ranking | Parameters |
---|---|
1 | Saturated water content: θs |
2 | Particle size distribution index: psdi |
3 | Saturated hydraulic conductivity: ksat |
4 | Water content at field capacity: fc |
5 | Water content at wilting point: wp |
6 | Residual water content: θr |
Simulation Period | Start | End | |
---|---|---|---|
C1 | 8 September 2001 | 30 December 2002 | Calibration |
C2 | 16 January 1986 | 28 February 1986 | |
C3 | 1 January 1988 | 5 October 1989 | |
C4 | 31 January 1990 | 17 August 1991 | |
C5 | 18 November 1991 | 1 October 1992 | |
V1 | 21 June 2018 | 22 June 2018 | Validation |
V2 | 25 June 2018 | 29 June 2018 | |
V3 | 4 October 2018 | 5 October 2018 | |
V4 | 23 October 2018 | 24 October 2018 |
Ranking Number | Parameter Name | Relative Importance Norm |
---|---|---|
1 | fprn: Parameter to compute allocation factors | 5.32 × 10−1 |
2 | Sprn: Parameter to compute allocation factors | 2.58 × 10−1 |
3 | GPP-NPP: GPP/NPP ratio | 4.53 × 10−2 |
4 | Alpha: Parameter to compute allocation factors | 3.88 × 10−2 |
5 | wood-density | 3.57 × 10−2 |
6 | agemax: maximum age of the plant | 2.01 × 10−2 |
7 | hdmin: H/D ratio in carbon partitioning for low density | 1.40 × 10−2 |
8 | phi-theta: Empirical coefficient of the soil moisture efficiencyfunction for canopy resistance | 1.15 × 10−2 |
9 | k: H/D ratio in carbon partitioning for low density | 1.04 × 10−2 |
10 | albedo: Plant albedo | 8.76 × 10−3 |
11 | fpra: Parameter to compute allocation factors | 7.45 × 10−3 |
12 | Spra: Parameter to compute allocation factors | 7.43 × 10−3 |
13 | Sla: Specific leaf area | 2.92 × 10−3 |
14 | phi-ea: Empirical coefficient of the vapor pressure efficiency function for canopy resistance | 2.71 × 10−3 |
15 | canopymax: maximum canopy storage capacity | 2.20 × 10−3 |
16 | laimax: maximum leaf area index used for precipitation interception | 2.00 × 10−3 |
17 | hdmax: H/D ratio in carbon partitioning for low density | 4.41 × 10−4 |
18 | tcold-leaf: Temperature threshold that accelerates leaf turnover | 1.67 × 10−4 |
19 | dbhdcmax: maximum ratio between stem and crown diameters | 3.42 × 109 |
20 | dbhdcmin: minimum ratio between stem and crown diameters | 2.79 × 109 |
21 | denmax: maximum trees density | 1.67 × 109 |
22 | denmin: minimum trees density | 5.48 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feki, M.; Ravazzani, G.; Ceppi, A.; Pellicone, G.; Caloiero, T. Integration of Forest Growth Component in the FEST-WB Distributed Hydrological Model: The Bonis Catchment Case Study. Forests 2021, 12, 1794. https://doi.org/10.3390/f12121794
Feki M, Ravazzani G, Ceppi A, Pellicone G, Caloiero T. Integration of Forest Growth Component in the FEST-WB Distributed Hydrological Model: The Bonis Catchment Case Study. Forests. 2021; 12(12):1794. https://doi.org/10.3390/f12121794
Chicago/Turabian StyleFeki, Mouna, Giovanni Ravazzani, Alessandro Ceppi, Gaetano Pellicone, and Tommaso Caloiero. 2021. "Integration of Forest Growth Component in the FEST-WB Distributed Hydrological Model: The Bonis Catchment Case Study" Forests 12, no. 12: 1794. https://doi.org/10.3390/f12121794
APA StyleFeki, M., Ravazzani, G., Ceppi, A., Pellicone, G., & Caloiero, T. (2021). Integration of Forest Growth Component in the FEST-WB Distributed Hydrological Model: The Bonis Catchment Case Study. Forests, 12(12), 1794. https://doi.org/10.3390/f12121794