Overview of Solar Energy for Aquaculture: The Potential and Future Trends
Abstract
:1. Introduction
2. Overview of Solar Energy for Aquaculture
2.1. Status of Energy Used in Aquaculture
2.2. Status of Solar Energy Used in Aquaculture
2.3. The Potential of Solar Energy Used in Aquaculture
2.4. The Future of Solar Energy Used in Aquaculture
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
OECD | Organisation for Economic Co-operation and Development |
NOAA | National Oceanic and Atmospheric Administration |
CSP | Concentrated Solar Power |
PV | Photovoltaic |
COE | Cost of Energy |
PEM | Proton-Exchange Membrane |
References
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Philos. Trans. R. Soc. B 2010, 365, 2897–2912. [Google Scholar] [CrossRef]
- Available online: //www.marketwatch.com/press-release/global-aquaculture-market-2021-covid-19-impact-key-players-trends-sales-supply-analysis-and-forecast-2027-2021-02-19?tesla=y (accessed on 30 June 2021).
- FAO. Sustainability on Action World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Tyedmers, P.; Pelletier, N. Biophysical accounting in aquaculture: Insights from current practice and the need for methodological development. In Comparative Assessment of the Environmental Costs of Aquaculture and Other Food Production Sectors: Methods for Meaningful Comparisons; FAO/WFT Expert Workshop; FAO Fisheries Proc. No. 10; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; pp. 229–241. [Google Scholar]
- Kim, Y.W. Selection of Energy Systems in Aquaculture through a Decision Support Tool Considering Economic and Environmental Sustainability. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2018. [Google Scholar]
- LiVecchi, A.; Copping, A.; Jenne, D.; Gorton, A.; Preus, R.; Gill, G.; Robichaud, R.; Green, R.; Geerlofs, S.; Gore, S.; et al. Powering the Blue Economy; Exploring Opportunities for Marine Renewable Energy in Maritime Markets; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2019.
- International Energy Agency. World Energy Outlook; International Energy Agency: Paris, France, 2012.
- International Energy Agency. World Energy Outlook Special Report 2015: Energy and Climate Change; International Energy Agency: Paris, France, 2015.
- National Oceanic and Atmospheric Administration. National Centers for Environmental Information, State of the Climate: Global Analysis. Available online: http://www.ncdc.noaa.gov/sotc/global/201507 (accessed on 30 June 2021).
- Solangi, K.H.; Islamb, M.R.; Saidur, R.; Rahimb, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sust. Energ. Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Bharathi, S.; Cheryl, A.; Uma, A.; Ahilan, B.; Aanand, S.; Somu Sunder Lingam, R. Application of renewable energy in aquaculture. Aqua Int. 2019, 48–54. Available online: https://www.researchgate.net/publication/331716127_Application_of_Renewable_Energy_in_Aquaculture_Application_of_Renewable_Energy_in_Aquaculture (accessed on 30 June 2021).
- Salam, M.A.; Khan, S.A. Transition towards sustainable energy production-A review of the progress for solar energy in Saudi Arabia. Energy Explor. Exploit. 2018, 36, 3–27. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020.
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Working Group III of the Intergovernmental Panel on Climate Change: Cambridge, UK, 2011. [Google Scholar]
- Ioakeimidis, C.; Polatidis, H.; Haralambopoulos, D. Use of renewable energy in aquaculture: An energy audit case-study analysis. Glob. NEST J. 2013, 15, 82–294. [Google Scholar]
- Setiawan, A.; Setiawan, A.A. Community development in solar energy utilization to support fish farming in Sendangsari village. Energy Procedia 2013, 32, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Pringle, A.M.; Handler, R.M.; Pearce, J.M. Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Zhang, Q. Modeling of energy intensity in aquaculture: Future energy use of global aquaculture. SDRP J. Aquac. Fish. Fish Sci. 2018, 2, 60–89. [Google Scholar]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- US Department of Energy (USDE). Concentrating Solar Power. Available online: http://www1.eere.energy.gov/solar/sunshot/csp.html (accessed on 30 June 2021).
- Corral, N.; Anrique, N.; Fernandes, D.; Parrado, C.; Cáceres, G. Power, placement and LEC evaluation to install CSP plants in northern Chile. Renew. Sustain. Energy Rev. 2012, 16, 6678–6685. [Google Scholar] [CrossRef]
- Bosetti, V.; Catenacci, M.; Fiorese, G.; Verdolini, E. The future prospect of PV and CSP solar technologies: An expert elicitation survey. Energy Policy 2012, 49, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Py, X.; Azoumah, Y.; Olives, R. Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries. Renew. Sustain. Energy Rev. 2013, 18, 306–315. [Google Scholar] [CrossRef]
- Applebaum, J.; Mozes, D.; Steiner, A.; Segal, I.; Barak, M.; Reuss, M.; Roth, P. Progress in Photovoltaics: Research and application. Photovoltaics 2001, 9, 275–301. [Google Scholar]
- Campen, B.V.; Guidi, D.; Best, G. Solar Photovoltaics for Sustainable Agriculture and Rural Development; Environment and Natural Resources Working Paper No. 2; FAO: Rome, Italy, 2000. [Google Scholar]
- Tanveer, M.; Mayilsamy, S. A conceptual approach for development of solar powered aeration system in aquaculture farms. Int. J. Environ. Sci. Technol. 2016, 5, 2921–2925. [Google Scholar]
- Appelbaum, J.; Mozes, D.; Steiner, A.; Segal, I.; Bark, M.; Reuss, M.; Roth, P. Aeration of fish-ponds by photovoltaic power. Prog. Photovolt. 2001, 9, 295–301. [Google Scholar] [CrossRef]
- Satriadi, A.B. Designing Windmill as a Driver of Shrimp Pond Aerator. Bachelor’s Thesis, Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia, 2010. [Google Scholar]
- Ghoniem, A.A. Design optimization of photovoltaic powered water pumping system. Energy Convers. Manag. 2006, 47, 1449–1463. [Google Scholar] [CrossRef]
- Meah, K.; Fletcher, S.; Ula, S. Solar photovoltaic water pumping for remote location. Renew. Sustain. Energy Rev. 2008, 12, 472–487. [Google Scholar] [CrossRef]
- Sadat, S.A.; Faraji, J.; Babaei, M.; Ketabi, A. Techno-Economical Study of Two Hybrid Power Systems for a Remote Village in Iran by Homer Software; Shahid Rajae Teacher Training University: Tehran, Iran, 2011. [Google Scholar]
- Cao, L.; Diana, J.S.; Keoleian, G.A. Role of life cycle assessment in sustainable aquaculture. Rev. Aquacult. 2013, 5, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Nash, C.E. The History of Aquaculture; Wiley-Blackwell: Ames, IA, USA, 2011. [Google Scholar]
- Toner, D.; Mathies, M. The Potential for Renewable Energy Usage in Aquaculture. 2002. Aquaculture Initiative. Available online: http://www.aquacultureinitiative.eu/Renewable%20Energy%20Report.pdf (accessed on 30 June 2021).
- Aquatera. Renewable Power Generation on Aquaculture Sites. Scottish Aquaculture Research Forum 2014. Available online: http://www.sarf.org.uk/cms-assets/documents/152961–230407.sarf093.pdf (accessed on 30 June 2021).
- Fiander, L.; Graham, M.; Murray, H.; Boileau, R. Land based multi-trophic aquaculture research at the wave energy research center. In Proceedings of the Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–5. [Google Scholar]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F. Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environ. Sci. Technol. 2009, 43, 8730–8736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, N.; Tyedmers, P. Life Cycle Assessment of frozen tilapia fillets from Indonesian lake-based and pond-based intensive aquaculture systems. J. Ind. Ecol. 2010, 14, 467–481. [Google Scholar] [CrossRef]
- Heeb, J.; Wyss, P. Tropical polyculture production with the integrated “Tropenhaus” concept-Case study in Switzerland. In Sustaina Aqua Handbook-A Handbook of Sustainable Aquaculture; Váradi, L., Bardócz, T., Oberdieck, A., Eds.; Bremerhaven, Germany, 2017; pp. 95–98. Available online: https://haki.naik.hu/sites/default/files/uploads/2018-09/sustainaqua_handbook_en.pdf (accessed on 30 June 2021).
- Costa-Pierce, B. Sustainable ecological aquaculture systems: The need for a new social contract for aquaculture development. Mar. Technol. Soc. J. 2010, 44, 88–112. [Google Scholar] [CrossRef]
- Eding, E.; Kamstra, A. Netherlands farms tune recirculation systems to production of varied species. Glob. Aquac. Advocate 2002, 5, 52–55. [Google Scholar]
- Aubin, J.; Papatryphon, E.; van der Werf, H.M.G.; Chatzifotis, S. Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J. Clean. Prod. 2009, 17, 354–361. [Google Scholar] [CrossRef]
- Gál, D.; Pekár, F.; Kerepeczki, E.; Váradi, L. Experiments on the operation of a combined aquaculture-algae system. Aquacult. Int. 2007, 15, 173–180. [Google Scholar] [CrossRef]
- Cao, L.; Diana, J.S.; Keoleian, G.A.; Lai, Q. Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ. Sci. Technol. 2011, 45, 6531–6538. [Google Scholar] [CrossRef]
- Iribarren, D. Life Cycle Assessment of Mussel and Turbot Aquaculture: Application and Insights. Ph.D. Thesis, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, 2010. [Google Scholar]
- Winther, U.; Ziegler, F.; Hognes, E.S.; Emanuelsson, A.; Sund, V. Carbon Footprint and Energy Use of Norwegian Seafood Products; SINTEF Fisheries and aquaculture Report No. 2009; SINTEF: Trondheim, Norway, 2009. [Google Scholar]
- Meyhoff Fry, J. Carbon Footprint of Scottish Suspended Mussels and Intertidal Oysters; SARF078; Scottish Aquaculture Research Forum (SARF): Pitlochry, Scotland, UK, 2011. [Google Scholar]
- Kim, Y.; Wang, M.; Kinyua, M.; Cools, C.; Zhang, Q.; Ergas, S.J. Alternative Energy Sources for Florida Aquaculture Systems Final Report; Department of Civil and Environmental Engineering, University of South Florida: Tampa, FL, USA, 2015. [Google Scholar]
- Boxman, S.E.; Zhang, Q.; Bailey, D.; Trotz, M.A. Life cycle assessment of a commercial-scale freshwater aquaponics system. Environ. Eng. Sci. 2017, 34, 299–311. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Lahham, N. Solar energy farming as a development innovation for vulnerable water basins. Dev. Pract. 2019, 29, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.-H. PLC-based design of monitoring system for ICT-integrated vertical fish farm. Hum-Cent. Comput. Inf. Sci. 2017, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- UNHCR. UNHCR Launches Sustainable Energy Strategy, Strengthens Climate Action. 24 October 2019. Available online: https://www.unhcr.org/news/press/2019/10/5db156d64/unhcr-launchessustainable-energy-strategy-strengthens-climate-action.html (accessed on 30 June 2021).
- Prasetyaningsari, I.; Setiawan, A.; Setiawan, A.A. Design optimization of solar powered aeration system for fish pond in Sleman Regency, Yogyakarta by HOMER software. Energy Procedia 2013, 32, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, H.; Ma, Z.; Zhang, Y.; Tian, C.; Cheng, G. Design and application of a solar mobile pond aquaculture water quality-regulation machine based in Bream Pond aquaculture. PLoS ONE 2016, 11, e0146637. [Google Scholar] [CrossRef]
- Hendarti, R.; Wangidjaja, W.; Septiafani, L.G. A study of solar energy for an aquaculture in Jakarta. In Proceedings of the 2nd International Conference on Eco Engineering Development 2018 (ICEED 2018), Tangerang, Indonesia, 5–6 September 2018. [Google Scholar]
- Kirihara, S.; Shida, T.; Kubota, T.; Honda, A.; Itaka, K.; Guan, G.; Ioka, S. Research on Utilization of Renewable Energy for Aquaculture of Horse Mackerel and Sea Cucumber in Fishing Ports. Grand Renewable Energy 2018 Proceedings June 2018 Pacifico Yokohama. In Proceedings of the Japan Council for Renewable Energy, Yokohama, Japan, 17–22 June 2018. [Google Scholar]
- Nguyen, N.T.; Matsuhashia, R.; Vo, T.T.B.C. A sustainable energy model for shrimp farms in the Mekong Delta. Energy Procedia 2019, 157, 926–993. [Google Scholar]
- Nguyen, N.T.; Matsuhashi, R. An optimal design on sustainable energy systems for shrimp farms. IEEE Power Energy Soc. Sect. 2019, 7, 165543–165558. [Google Scholar] [CrossRef]
- Tous-Zamora, D.; de la Rosa-Sánchez, F.; Sánchez-Teba, E.M.; Cordero-Tous, M.; Ruiz-Campos, R. Design of an aquaponic system run on solar power for a family business in Chad. Eur. J. Manag. Bus. Econ. 2019, 9, 39–48. [Google Scholar]
- Available online: https://gogetfunding.com/solar-cell-recirculatied-aquaculture-aquaculture-system (accessed on 30 June 2021).
- Babiyola, D.; Thamarai Selva, J. A Conceptual approach for development of solar power supply in aquaculture farm using net meter system in Nagapattinam Area. Emp. J. Appl. Sci. Res. 2019, 5, 1–7. [Google Scholar]
- Cornejo-Ponce, L.; Vilca-Salinas, P.; Lienqueo-Aburto, H.; Arenas, M.J.; Pepe-Victoriano, R.; Carpio, E.; Rodríguez, J. Integrated Aquaculture Recirculation System (IARS) Supported by Solar Energy as a Circular Economy Alternative for Resilient Communities in Arid/Semi-Arid Zones in Southern South America: A Case Study in the Camarones Town. Water 2020, 12, 3469. [Google Scholar] [CrossRef]
- Aquaculture 4.0 with Small Technologies. Available online: https://www.innovationnewsnetwork.com/aquaculture-4–0-with-smalle-technologies/3886/ (accessed on 30 June 2021).
- Available online: https://www.blue21.nl/massive-photovoltaic-power-station-built-on-fishery-in-is-china-now-operational/ (accessed on 30 June 2021).
- Available online: https://focustaiwan.tw/sci-tech/202011060024 (accessed on 30 June 2021).
- Available online: https://www.rastechmagazine.com/solar-energy-gives-aquaculture-a-boost-in-shrimps-project (accessed on 30 June 2021).
- Available online: http://reeep.sreda.gov.bd/interventions/renewable-energy/solar-aquaculture.html (accessed on 30 June 2021).
- Introducing Solar Energy in Egyptian Aquaculture/Fish Consulting Group. Available online: https://fishconsult.org/?p=14881 (accessed on 30 June 2021).
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S.N. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Mahesh, A.; Shoba Jasmin, K.S. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renew. Sustain. Energy Rev. 2013, 26, 414–424. [Google Scholar] [CrossRef]
- Liu, S.Y.; Perng, Y.H.; Ho, Y.F. The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation? Renew. Sustain. Energy Rev. 2013, 28, 92–106. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Technology Roadmap: Solar Photovoltaic Energy. 2010. Available online: http://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf (accessed on 30 June 2021).
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Thavasi, V.; Ramakrishna, S. Asia energy mixes from socio-economic and environmental perspectives. Energy Policy 2009, 37, 4240–4250. [Google Scholar] [CrossRef]
- REN21. Renewable Energy Policy Network for the 21st Century; Report; Renewable Energy Policy Network for the 21st Century: Paris, France, 2009. [Google Scholar]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- USDE. Study: Solar Power Could Provide 10% of U.S. Electricity by 2025. Available online: http://apps1.eere.energy.gov/news/newsdetail.cfm/newsid=11835 (accessed on 30 June 2021).
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban. Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Branker, K.; Pearce, J.M. Financial return for government support of largescale thin-film solar photovoltaic manufacturing in Canada. Energy Policy 2010, 38, 4291–4303. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Effective policies for renewable energy-the example of China’s wind power-lessons for China’s photovoltaic power. Renew. Sustain. Energy Rev. 2010, 14, 702–712. [Google Scholar] [CrossRef]
- Ashraf, C.M.; Raza, R.; Hayat, S.A. Renewable energy technologies in Pakistan: Prospects and challenges. Renew. Sustain. Energy Rev. 2009, 13, 1657–1662. [Google Scholar] [CrossRef]
- Oh, T.H.; Pang, S.Y.; Chua, S.C. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth. Renew. Sustain. Energy Rev. 2010, 14, 1241–1252. [Google Scholar] [CrossRef]
- ESMAP. Photovoltaic Power Potential in the World; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Mungkung, R.; de Haes, H.U.; Clift, R. Potentials and limitations of life cycle assessment in setting ecolabelling criteria: A case study of Thai shrimp aquaculture product. Int. J. Life Cycle Assess. 2006, 11, 55–59. [Google Scholar] [CrossRef]
- Abid, M.; Abid, Z.; Sagin, J.; Murtaza, R.; Sarbassov, D.; Shabbir, M. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. Int. J. Environ. Sci. Technol. 2018, 16, 1–9. [Google Scholar] [CrossRef]
- The World Bank; ESMAP; SERIS. Where Sun Meets Water: Floating Solar Market Report, Executive Summary; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Singhal, D.; Suresh, S.; Arora, S.; Singhvi, S.; Rustagi, V. Floating Solar—Opportunities and Way Ahead; Bridge of India Report; Bridge of India: Gurgaon, India, 2018; pp. 1–12. [Google Scholar]
- Available online: https://www.solarnovus.com/researchers-study-feasibility-of-floating-photovoltaics-in-open-sea-conditions_N11617.html (accessed on 30 June 2021).
- Moustafa, K. Toward Future Photovoltaic-Based Agriculture in Sea. Trends Biotechnol. 2016, 34, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Château, P.A.; Wunderlich, R.F.; Wang, T.W.; Lai, H.T.; Chen, C.C.; Chang, F.J. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Sci. Total. Environ. 2019, 687, 654–666. [Google Scholar] [CrossRef] [PubMed]
References | Species | System Intensity | Culture Technology | Energy Intensive (MJ/kg Production) |
---|---|---|---|---|
Ayer & Tyedmers [37] | Salmon | Intensive | Net-pen, marine | 27 |
Salmon | Intensive | Flow-through, land-based saltwater | 98 | |
Salmon | Intensive | Re-circulating, land-based freshwater | 353 | |
Salmon | Intensive | RAS | 92 | |
Salmon | Semi-intensive | Flow-through | 48 | |
Salmon | Semi-intensive | Floating bag system | 6 | |
salmon | Semi-intensive | Net pen | 3 | |
Pelletier et al. [38] | Salmon | Intensive | Canada | 31 |
Salmon | Intensive | UK | 48 | |
Salmon | Intensive | Norway | 26 | |
Heeb & Wyss [39] | Tilapia | Intensive | RAS | 772 |
Tilapia | Intensive | RAS | 570 | |
Eding et al. [42] | Tilapia | Intensive | RAS | 19 |
Aubin et al. [43] | Turbot | Intensive | RAS | 281 |
Trout | Intensive | Flow-through Raceway | 68 | |
Seabass | Intensive | Cage | 49 | |
Gál et al. [44] | Catfish, tilapia, carp, mussel | Intensive | Pond | 78 |
Catfish, tilapia, carp | Intensive | Pond | 37 | |
Catfish | Intensive | Pond | 68 | |
Catfish, tilapia, carp, mussel | Extensive | Pond | 30 | |
Catfish, tilapia, carp | Extensive | Pond | 27 | |
Catfish | Extensive | Pond | 32 | |
Catfish, tilapia, carp, mussel | Extensive | Pond | 10 | |
Catfish, tilapia, carp | Extensive | Pond | 9 | |
Catfish | Extensive | Pond | 10 | |
Carp | Semi-intensive | Pond | 23 | |
Carp | Semi-intensive | Pond | 48 | |
Pelletier and Tyedmers [39] | Tilapia | Intensive | Lake-based | 18 |
Costa-Pierce, [41] | Salmon | n/a | Tanks | 45 |
Oysters | intensive | Cage | 586 | |
Shrimp | Semi-intensive | Pond | 40 | |
Catfish | n/a | Pond | 84 | |
Tilapia | Semi-intensive | Na | 60 | |
Mussel | n/a | Longline | 1 | |
Trout | intensive | Cage | 40 | |
Tilapia | Semi-intensive | Pond | 40 | |
Carp | intensive | Pond | 40 | |
Cao et al. [45] | White-leg shrimp Litopenaeus vannamei | Intensive | Ponds | 62 |
Semi-intensive | 34 | |||
Iribarren [46] | Galician mussels (Mytilus galloprovincialis) | Extensive | Rafts | 3 |
Winther et al. [47] | Blue mussels (Mytilus edulis) | Extensive | Longline | 3 |
Meyhoff Fry [48]. | Blue mussels (Mytilus eduli) | Extensive | Longline | 1 |
Oysters | Extensive | Bag and trestle | 4 | |
Kim et al. [49] | Tilapia | Semi-intensive | RAS (aquaponics) | 16 |
Kim et al. [49] | Red drum | Intensive | RAS | 81 |
Boxman et al. [50] | Red drum | Semi-intensive | RAS (aquaponics) | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, T.T.E.; Ko, H.; Huh, J.-H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. https://doi.org/10.3390/en14216923
Vo TTE, Ko H, Huh J-H, Park N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies. 2021; 14(21):6923. https://doi.org/10.3390/en14216923
Chicago/Turabian StyleVo, Thi Thu Em, Hyeyoung Ko, Jun-Ho Huh, and Namje Park. 2021. "Overview of Solar Energy for Aquaculture: The Potential and Future Trends" Energies 14, no. 21: 6923. https://doi.org/10.3390/en14216923
APA StyleVo, T. T. E., Ko, H., Huh, J.-H., & Park, N. (2021). Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies, 14(21), 6923. https://doi.org/10.3390/en14216923