The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Precursor Characterisation
2.2. Catalyst Characterisation
2.3. Catalyst Performance
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterisation
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wuebbles, D.J.; Sanyal, S. Air Quality in a Cleaner Energy World. Curr. Pollut. Rep. 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- Wang, P.; Cui, C.; Li, K.; Yi, J.; Lei, L. The Effect of Mn Content on Catalytic Activity of the Co–Mn–Ce Catalysts for Propane Oxidation: Importance of Lattice Defect and Surface Active Species. Catal. Lett. 2020, 150, 1505–1514. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Deshmukh, G.M.; Mishra, D.P. Kinetics of the Complete Combustion of Dilute Propane and Toluene over Iron-Doped ZrO2 Catalyst. Energy Fuels 2005, 19, 54–63. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, K.; Wang, C.; Liu, X.; Wu, G.; Wang, Z.; Wang, D. LaMnO3 Perovskites via a Facile Nickel Substitution Strategy for Boosting Propane Combustion Performance. Ceram. Int. 2020, 46, 6652–6662. [Google Scholar] [CrossRef]
- Hu, Z.; Qiu, S.; You, Y.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W.; Lu, G. Hydrothermal Synthesis of NiCeOx Nanosheets and Its Application to the Total Oxidation of Propane. Appl. Catal. B Environ. 2018, 225, 110–120. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhang, K.; Zhang, Y.; Wang, X.; Zhang, T.; Wu, X.; Chen, C.; Jiang, L. Facile Synthesis of Mn–Fe/CeO2 Nanotubes by Gradient Electrospinning and Their Excellent Catalytic Performance for Propane and Methane Oxidation. Dalton Trans. 2017, 46, 16967–16972. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of Various Types of VOCs by Adsorption/Catalytic Oxidation: A Review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Adebayo, B.; Gelles, T.; Rownaghi, A.; Rezaei, F. Abatement of Gaseous Volatile Organic Compounds: A Process Perspective. Catal. Today 2020, 350, 100–119. [Google Scholar] [CrossRef]
- Taylor, M.; Ndifor, E.N.; Garcia, T.; Solsona, B.; Carley, A.F.; Taylor, S.H. Deep Oxidation of Propane Using Palladium–Titania Catalysts Modified by Niobium. Appl. Catal. Gen. 2008, 350, 63–70. [Google Scholar] [CrossRef]
- Shah, P.M.; Burnett, J.W.H.; Morgan, D.J.; Davies, T.E.; Taylor, S.H. Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts 2019, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.M.; Day, A.N.; Davies, T.E.; Morgan, D.J.; Taylor, S.H. Mechanochemical Preparation of Ceria-Zirconia Catalysts for the Total Oxidation of Propane and Naphthalene Volatile Organic Compounds. Appl. Catal. B Environ. 2019, 253, 331–340. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.; Solsona, B.; Taylor, S.H. Nano-Crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catal. Lett. 2005, 105, 183–189. [Google Scholar] [CrossRef]
- Setiabudi, A.; Chen, J.; Mul, G.; Makkee, M.; Moulijn, J.A. CeO2 Catalysed Soot Oxidation: The Role of Active Oxygen to Accelerate the Oxidation Conversion. Appl. Catal. B Environ. 2004, 51, 9–19. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Y.; Zhang, L.; Shen, L.; Xiao, Y.; Zhang, Y.; Au, C.; Jiang, L. Insight into the Effect of Morphology on Catalytic Performance of Porous CeO2 Nanocrystals for H2S Selective Oxidation. Appl. Catal. B Environ. 2019, 252, 98–110. [Google Scholar] [CrossRef]
- Krishna, K.; Bueno-López, A.; Makkee, M.; Moulijn, J.A. Potential Rare Earth Modified CeO2 Catalysts for Soot Oxidation: I. Characterisation and Catalytic Activity with O2. Appl. Catal. B Environ. 2007, 75, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shen, G.; Li, J.; Liu, H.; Wang, Q.; Chen, Y. Catalytic Removal of Benzene over CeO2–MnOx Composite Oxides Prepared by Hydrothermal Method. Appl. Catal. B Environ. 2013, 138–139, 253–259. [Google Scholar] [CrossRef]
- Lykaki, M.; Pachatouridou, E.; Carabineiro, S.A.C.; Iliopoulou, E.; Andriopoulou, C.; Kallithrakas-Kontos, N.; Boghosian, S.; Konsolakis, M. Ceria Nanoparticles Shape Effects on the Structural Defects and Surface Chemistry: Implications in CO Oxidation by Cu/CeO2 Catalysts. Appl. Catal. B Environ. 2018, 230, 18–28. [Google Scholar] [CrossRef]
- Datta, S.; Torrente-Murciano, L. Nanostructured Faceted Ceria as Oxidation Catalyst. Curr. Opin. Chem. Eng. 2018, 20, 99–106. [Google Scholar] [CrossRef]
- Torrente-Murciano, L.; Gilbank, A.; Puertolas, B.; Garcia, T.; Solsona, B.; Chadwick, D. Shape-Dependency Activity of Nanostructured CeO2 in the Total Oxidation of Polycyclic Aromatic Hydrocarbons. Appl. Catal. B Environ. 2013, 132–133, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; LaCoste, J.D.; Khamidullina, N.G.; Fox, E.; Gang, D.D.; Hernandez, R.; Yan, H. Investigate Interactions of Water with Mesoporous Ceria Using in Situ VT-DRIFTS. Surf. Sci. 2020, 691, 121486. [Google Scholar] [CrossRef]
- Kurian, M.; Kunjachan, C. Investigation of Size Dependency on Lattice Strain of Nanoceria Particles Synthesised by Wet Chemical Methods. Int. Nano Lett. 2014, 4, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Yu, Q.; Dai, Y.; Tang, C.; Liu, L.; Zhang, H.; Gao, F.; Dong, L.; Chen, Y. Influence of Cerium Precursors on the Structure and Reducibility of Mesoporous CuO-CeO2 Catalysts for CO Oxidation. Appl. Catal. B Environ. 2012, 119–120, 308–320. [Google Scholar] [CrossRef]
- Zhang, C.; Chu, W.; Chen, F.; Li, L.; Jiang, R.; Yan, J. Effects of Cerium Precursors on Surface Properties of Mesoporous CeMnOx Catalysts for Toluene Combustion. J. Rare Earths 2020, 38, 70–75. [Google Scholar] [CrossRef]
- Guillén-Hurtado, N.; Atribak, I.; Bueno-López, A.; García-García, A. Influence of the Cerium Precursor on the Physico-Chemical Features and NO to NO2 Oxidation Activity of Ceria and Ceria–Zirconia Catalysts. J. Mol. Catal. Chem. 2010, 323, 52–58. [Google Scholar] [CrossRef]
- Sellick, D.R.; Aranda, A.; García, T.; López, J.M.; Solsona, B.; Mastral, A.M.; Morgan, D.J.; Carley, A.F.; Taylor, S.H. Influence of the Preparation Method on the Activity of Ceria Zirconia Mixed Oxides for Naphthalene Total Oxidation. Appl. Catal. B Environ. 2013, 132–133, 98–106. [Google Scholar] [CrossRef]
- D’Assunção, L.M.; Giolito, I.; Ionashiro, M. Thermal Decomposition of the Hydrated Basic Carbonates of Lanthanides and Yttrium. Thermochim. Acta 1989, 137, 319–330. [Google Scholar] [CrossRef]
- Padeste, C.; Cant, N.W.; Trimm, D.L. Thermal Decomposition of Pure and Rhodium Impregnated Cerium(III) Carbonate Hydrate in Different Atmospheres. Catal. Lett. 1994, 24, 95–105. [Google Scholar] [CrossRef]
- Wakita, H.; Kinoshita, S. A Synthetic Study of the Solid Solutions in the Systems and La2(CH3)3·8H2O-Ce2(CO3)3·8H2O and La(OH)CO3–Ce(OH)CO3. Bull. Chem. Soc. Jpn. 1979, 52, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Hirano, M.; Kato, E. Hydrothermal Synthesis of Two Types of Cerium Carbonate Particles. J. Mater. Sci. Lett. 1999, 18, 403–405. [Google Scholar] [CrossRef]
- Hirano, M.; Kato, E. Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders. J. Am. Ceram. Soc. 1999, 82, 786–788. [Google Scholar] [CrossRef]
- Pettinger, N.W.; Williams, R.E.A.; Chen, J.; Kohler, B. Crystallization Kinetics of Cerium Oxide Nanoparticles Formed by Spontaneous, Room-Temperature Hydrolysis of Cerium(IV) Ammonium Nitrate in Light and Heavy Water. Phys. Chem. Chem. Phys. 2017, 19, 3523–3531. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media, 2012; ISBN 978-1-4020-2303-3. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Li, M.; Howe, J.; Meyer, H.M.; Overbury, S.H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef] [PubMed]
- López, J.M.; Gilbank, A.L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The Prevalence of Surface Oxygen Vacancies over the Mobility of Bulk Oxygen in Nanostructured Ceria for the Total Toluene Oxidation. Appl. Catal. B Environ. 2015, 174–175, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yeung, K.L.; Bañares, M.A. Ceria and Its Related Materials for VOC Catalytic Combustion: A Review. Catal. Today 2020, 356, 141–154. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.-W. Cerium Oxidation State in Ceria Nanoparticles Studied with X-Ray Photoelectron Spectroscopy and Absorption near Edge Spectroscopy. Surf. Sci. 2004, 563, 74–82. [Google Scholar] [CrossRef]
- Trovarelli, A.; Llorca, J. Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis? ACS Catal. 2017, 7, 4716–4735. [Google Scholar] [CrossRef]
- Wang, K.; Chang, Y.; Lv, L.; Long, Y. Effect of Annealing Temperature on Oxygen Vacancy Concentrations of Nanocrystalline CeO2 Film. Appl. Surf. Sci. 2015, 351, 164–168. [Google Scholar] [CrossRef]
- Holgado, J.P.; Munuera, G.; Espinós, J.P.; González-Elipe, A.R. XPS Study of Oxidation Processes of CeOx Defective Layers. Appl. Surf. Sci. 2000, 158, 164–171. [Google Scholar] [CrossRef]
- Mirzaei, A.A.; Shaterian, H.R.; Joyner, R.W.; Stockenhuber, M.; Taylor, S.H.; Hutchings, G.J. Ambient Temperature Carbon Monoxide Oxidation Using Copper Manganese Oxide Catalysts: Effect of Residual Na+ Acting as Catalyst Poison. Catal. Commun. 2003, 4, 17–20. [Google Scholar] [CrossRef]
- Marécot, P.; Fakche, A.; Kellali, B.; Mabilon, G.; Prigent, P.; Barbier, J. Propane and Propene Oxidation over Platinum and Palladium on Alumina: Effects of Chloride and Water. Appl. Catal. B Environ. 1994, 3, 283–294. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, X.; Jin, J.; Di, X.; Liang, C.; Liu, Z. Insight into Catalytic Properties of Co3O4-CeO2 Binary Oxides for Propane Total Oxidation. Chin. J. Catal. 2020, 41, 679–690. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, L.; Liu, Y.; Yang, T.; Deng, J.; Dai, H. Concurrent Catalytic Removal of Typical Volatile Organic Compound Mixtures over Au-Pd/α-MnO2 Nanotubes. J. Environ. Sci. 2018, 64, 276–288. [Google Scholar] [CrossRef]
- Fang, J.; Chen, X.; Xia, Q.; Xi, H.; Li, Z. Effect of Relative Humidity on Catalytic Combustion of Toluene over Copper Based Catalysts with Different Supports. Chin. J. Chem. Eng. 2009, 17, 767–772. [Google Scholar] [CrossRef]
- García, T.; Solsona, B.; Taylor, S.H. Naphthalene Total Oxidation over Metal Oxide Catalysts. Appl. Catal. B Environ. 2006, 66, 92–99. [Google Scholar] [CrossRef]
- Luo, J.-Y.; Meng, M.; Yao, J.-S.; Li, X.-G.; Zha, Y.-Q.; Wang, X.; Zhang, T.-Y. One-Step Synthesis of Nanostructured Pd-Doped Mixed Oxides MOx-CeO2 (M=Mn, Fe, Co, Ni, Cu) for Efficient CO and C3H8 Total Oxidation. Appl. Catal. B Environ. 2009, 87, 92–103. [Google Scholar] [CrossRef]
- Aranda, A.; Puértolas, B.; Solsona, B.; Agouram, S.; Murillo, R.; Mastral, A.M.; Taylor, S.H.; Garcia, T. Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catal. Lett. 2010, 134, 110–117. [Google Scholar] [CrossRef]
- Ndifor, E.N.; Garcia, T.; Solsona, B.; Taylor, S.H. Influence of Preparation Conditions of Nano-Crystalline Ceria Catalysts on the Total Oxidation of Naphthalene, a Model Polycyclic Aromatic Hydrocarbon. Appl. Catal. B Environ. 2007, 76, 248–256. [Google Scholar] [CrossRef]
- Solsona, B.; Garcia, T.; Aylón, E.; Dejoz, A.M.; Vázquez, I.; Agouram, S.; Davies, T.E.; Taylor, S.H. Promoting the Activity and Selectivity of High Surface Area Ni–Ce–O Mixed Oxides by Gold Deposition for VOC Catalytic Combustion. Chem. Eng. J. 2011, 175, 271–278. [Google Scholar] [CrossRef]
- Garcia, T.; Agouram, S.; Sánchez-Royo, J.F.; Murillo, R.; Mastral, A.M.; Aranda, A.; Vázquez, I.; Dejoz, A.; Solsona, B. Deep Oxidation of Volatile Organic Compounds Using Ordered Cobalt Oxides Prepared by a Nanocasting Route. Appl. Catal. Gen. 2010, 386, 16–27. [Google Scholar] [CrossRef]
- Tang, W.; Weng, J.; Lu, X.; Wen, L.; Suburamanian, A.; Nam, C.-Y.; Gao, P.-X. Alkali-Metal Poisoning Effect of Total CO and Propane Oxidation over Co3O4 Nanocatalysts. Appl. Catal. B Environ. 2019, 256, 117859. [Google Scholar] [CrossRef]
- Chai, G.; Zhang, W.; Guo, Y.; Valverde, J.L.; Giroir-Fendler, A. The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene over Co3O4 Catalysts. Catalysts 2020, 10, 867. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Dell’Agli, G.; Biesuz, M.; Sglavo, V.M.; Pansini, M. Effect of the Precipitating Agent on the Synthesis and Sintering Behavior of 20 Mol Sm-Doped Ceria. Adv. Mater. Sci. Eng. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, H.; Liu, Y.; Chen, Y.; Yang, S. Effect of Precipitants on Ni-CeO2 Catalysts Prepared by a Co-Precipitation Method for the Reverse Water-Gas Shift Reaction. J. Rare Earths 2013, 31, 969–974. [Google Scholar] [CrossRef]
- Li, J.-G.; Ikegami, T.; Wang, Y.; Mori, T. Reactive Ceria Nanopowders via Carbonate Precipitation. J. Am. Ceram. Soc. 2002, 85, 2376–2378. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Accardo, G.; Frattini, D.; Marocco, A.; Esposito, S.; Freyria, F.S.; Pansini, M.; Dell’Agli, G. Effect of RE3+ on Structural Evolution of Rare-Earth Carbonates Synthesized by Facile Hydrothermal Treatment. Adv. Mater. Sci. Eng. 2019, 2019, e1241056. [Google Scholar] [CrossRef] [Green Version]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
Catalyst | Surface Area/m2 g−1 | Average Crystallite Size/nm | Lattice Parameter/nm | A590/A463 |
---|---|---|---|---|
CeO2 (IV) | 81 | 8.7 | 0.5409 | 0.018 |
CeO2 (III) | 19 | 9.3 | 0.5408 | 0.019 |
Catalyst | TPR Cycle | H2 Consumption Per Surface Area/μmol m−2 | H2 Consumption Per Mass/μmol g−1 |
---|---|---|---|
CeO2 (IV) | 1 2 | 0.435 0.145 | 35.20 11.73 |
CeO2 (III) | 1 2 | 4.575 0.464 | 86.93 8.81 |
Catalyst | XPS Ce:O:Na Ratio | Oβ/Oα Ratio | Ce3+/Ce4+ Ratio | EDX Ce:O:Na Ratio |
---|---|---|---|---|
CeO2 (IV) | 29:68:3 | 0.438 | 0.155 | 30:68:2 |
CeO2 (III) | 22:67:11 | 0.289 | 0.086 | 34:59:7 |
Catalyst | Propane Conversion/% | Surface Area Normalised Propane Oxidation a/mol s−1 m−2 | Mass Normalised Propane Oxidation a/mol s−1 g−1 |
---|---|---|---|
CeO2 (IV) | 50 | 3.73 × 10−3 | 3.02 × 10−1 |
CeO2 (III) | 4 | 3.68 × 10−3 | 6.99 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggett, K.; Davies, T.E.; Morgan, D.J.; Hewes, D.; Taylor, S.H. The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts 2021, 11, 1461. https://doi.org/10.3390/catal11121461
Aggett K, Davies TE, Morgan DJ, Hewes D, Taylor SH. The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts. 2021; 11(12):1461. https://doi.org/10.3390/catal11121461
Chicago/Turabian StyleAggett, Kieran, Thomas E. Davies, David J. Morgan, Dan Hewes, and Stuart H. Taylor. 2021. "The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane" Catalysts 11, no. 12: 1461. https://doi.org/10.3390/catal11121461
APA StyleAggett, K., Davies, T. E., Morgan, D. J., Hewes, D., & Taylor, S. H. (2021). The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts, 11(12), 1461. https://doi.org/10.3390/catal11121461