Event Abstract

Finite synaptic potentials cause a non-linear instantaneous response of the integrate-and-fire model

  • 1 Bernstein Center for Computational Neuroscience, Germany
  • 2 RIKEN Brain Science Institute, Japan
  • 3 Albert-Ludwigs-University, Faculty of Biology, Germany

The integrate-and-fire neuron model with exponential postsynaptic potentials is widely used in analytical work and in simulation studies of neural networks alike. For Gaussian white noise input currents, the membrane potential distribution is described by a population density approach [1]. The linear response properties of the model have successfully been calculated and applied to the dynamics of recurrent networks in this diffusion limit [2]. However, the diffusion approximation assumes the effect of each synapse on the membrane potential to be infinitesimally small. Here we go beyond this limit and allow for finite synaptic weights. We show, that this considerably alters the absorbing boundary condition at the threshold: in contrast to the diffusion limit, the probability density goes to zero on the scale of the amplitude of a postsynaptic potential (suppl. Fig B). We give an analytic approximation for the density (suppl. Fig A) and calculate how its behavior near threshold shapes the response properties of the neuron. The neuron with finite synaptic weights responds arbitrarily fast to transient positive inputs. This differs qualitatively from the behavior in the diffusion limit, where the neuron acts as a low-pass filter [3]. We extend the linear response theory [3] and quantify the instantaneous response of the neuron to an impulse like input current. Even for realistically small perturbations (s) of the order of a synaptic weight, we find a highly non-linear behavior of the spike density (suppl. Fig C). Direct simulations in continuous time [4] confirm the analytical results. For numerical simulations in discrete time, we provide an analytical treatment which quantitatively explains the distortions of the membrane potential density. We find that temporal discretization of spikes times amplifies the effects of finite synaptic weights. Our demonstration of a non-linear instantaneous response amends the theoretical analysis of synchronization phenomena and plasticity based on the diffusion limit and linear response theory.

Acknowledgements: Partially funded by DIP F1.2, BMBF Grant 01GQ0420 to the Bernstein Center for Computational Neuroscience Freiburg, EU Grant 15879 (FACETS), and Next-Generation Supercomputer Project of MEXT, Japan. All simulations are performed using NEST [5].

References

1. Ricciardi LM, Sacerdote L: The Ornstein-Uhlenbeck process as a model for neuronal activity. Biol Cybern35 :1979, 1-9

2. N, Hakim V: Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates.Neural Comput1999, 11(7) : 1621-1671

3. Brunel N, Chance FS, Fourcoud N, Abbott LF: Effects of Synaptic Noise and Filtering on the Frequency Response of Spiking Neurons. PRL 2001, 86(10) : 2186-2189

4. Morrison A, Straube S, Plesser HE, Diesmann M: Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput. 2007, 19(1): 47-79

5. Gewaltig M-O, Diesmann M: NEST (NEural Simulation Tool), Scholarpedia 2007, 2(4): 1430

Conference: Bernstein Conference on Computational Neuroscience, Frankfurt am Main, Germany, 30 Sep - 2 Oct, 2009.

Presentation Type: Poster Presentation

Topic: Dynamical systems and recurrent networks

Citation: Helias M, Deger M, Diesmann M and Rotter S (2009). Finite synaptic potentials cause a non-linear instantaneous response of the integrate-and-fire model. Front. Comput. Neurosci. Conference Abstract: Bernstein Conference on Computational Neuroscience. doi: 10.3389/conf.neuro.10.2009.14.056

Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.

Received: 26 Aug 2009; Published Online: 26 Aug 2009.

* Correspondence: Moritz Deger, Bernstein Center for Computational Neuroscience, Freiburg, Germany, md-web@gmx.org