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INDETERMINACY
IN A FORWARD LOOKING REGIME SWITCHING MODEL

ROGER E. A. FARMER, DANIEL F. WAGGONER, AND TAO ZHA

Abstract. This paper is about the properties of Markov switching rational expec-
tations (MSRE) models. We present a simple monetary policy model that switches
between two regimes with known transition probabilities. The �rst regime, treated
in isolation, has a unique determinate rational expectations equilibrium and the sec-
ond contains a set of indeterminate sunspot equilibria. We show that the Markov
switching model, which randomizes between these two regimes, may contain a con-
tinuum of indeterminate equilibria. We provide examples of stationary sunspot
equilibria and bounded sunspot equilibria which exist even when the MSRE model
satis�es a `generalized Taylor principle'. Our result suggests that it may be more
di�cult to rule out non-fundamental equilibria in MRSE models than in the single
regime case where the Taylor principle is known to guarantee local uniqueness.

I. Introduction

Work by Richard Clarida, Jordi Galí and Mark Gertler (2000) has stimulated recent
interest in models where monetary policy may occasionally change between a passive
regime in which there exists an indeterminate set of sunspot equilibria and an active
regime in which equilibrium is unique. Models of this kind are inherently non-linear
since the parameters of the model are represented by elements of a Markov chain.

Papers in the literature on nonlinear rational expectations models typically com-
pute a solution to functional equations using numerical methods, but not much is
known about the analytical properties of these equations. In an important paper,
Lars Svensson and NoahWilliams (SW) (2005) have proposed an algorithm for solving
Markov switching rational expectations (MSRE) models. Our computational experi-
ments suggest that the SW algorithm will �nd the unique value of the minimum-state-
variable (MSV) when it exists but it may also converge to one of a set of indeterminate
equilibria (Farmer, Waggoner, Zha (2006, Appendix 2)). Obtaining a complete set of
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INDETERMINACY 2

indeterminate equilibria even for a simple MSRE model is a much more di�cult prob-
lem, and to the best of our knowledge there are no systematic methods to accomplish
this task.

The distinction between the linear RE model and the MSRE model is subtle but
important and the conditions for existence and boundedness of a unique solution are
di�erent in the two cases. In this paper we study a simple Markov-switching model
of in�ation that combines two purely forward-looking rational expectations models.
The �rst one has a unique determinate equilibrium and the second is associated with
a set of indeterminate sunspot equilibria. The MSRE model switches between the
two models with transition probabilities governed by a Markov chain.

Within the MSRE environment we �rst establish the existence of an MSV equi-
librium for almost all values of the transition probabilities. We go on to discuss
alternative de�nitions of stationarity for non-linear models and we argue that mean-
square stability is an appropriate and appealing concept. We then show through a
series of examples that there exists a set of mean-square-stable sunspot equilibria for
large open sets of the model's parameter values. Our results imply that the exis-
tence of stationary sunspot equilibria in MRSE models is a pervasive phenomenon
that cannot be ruled out in all regimes by the actions of the policy maker in a single
regime.

II. The Model

Following Robert King (2000) and Michael Woodford (2003), we study a simple
�exible price model in which the central bank can a�ect in�ation but not the real
interest rate. In this model, the Fisher equation links the real interest rate, rt, and
the nominal interest rate, Rt, by the equation,

Rt = Et [πt+1] + rt, (1)
where Et is the mathematical expectation at date t and πt+1 is the in�ation rate at
date t + 1. The central bank sets the time-varying rule

Rt = φξtπt − κξtεt, (2)
where ξt is a two-state Markov process with transition probabilities (pi,j) and pi,j is
the probability of transiting from state j to state i. The stochastic process {εt}∞t=1

is independently distributed with mean zero and unit variance and is independent
of {ξt}∞t=1. Substituting Eq. (2) into Eq. (1) gives the following forward-looking
in�ation process

φξtπt = Et [πt+1] + rt + κξtεt. (3)
We assume that the real interest rate evolves exogenously according to

rt = ρrt−1 + νt, (4)
where |ρ| < 1 and {νt}∞t=1 is independently distributed with zero mean and �nite
variance and is independent of {ξt}∞t=1 and {εt}∞t=1.
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III. An Appropriate Equilibrium Concept

Much of the previous work on dynamic stochastic general equilibrium theory has
been concerned with constant parameter models. A typical way to proceed is to
specify preferences, technology and endowments and to make an explicit assumption
about the nature of stochastic shocks. Sometimes it is possible to specify an envi-
ronment in which, in the absence of shocks, there exists a unique stationary perfect
foresight equilibrium. An example is the single agent real business cycle model. When
the stationary equilibrium is unique it may be possible to approximate a stochastic
rational expectations equilibrium by linearizing the non-stochastic model around the
steady state and solving for an approximate stochastic rational expectations equi-
librium. For this solution to be asymptotically valid the stochastic shocks must be
bounded. Boundedness is necessary to keep the system close to the non-stochastic
steady state - the only point in the state space for which the linear approximation is
exact.

The non-stochastic dynamics of a perfect foresight linear model are completely
characterized by the roots of the characteristic polynomial of a �rst order matrix
di�erence equation. When all of these roots lie within the unit circle, the stochastic
process is stationary and, as a consequence, it is possible to prove theorems which
assert that as the variance of the shocks goes to zero, the approximation error vanishes.
One would like to prove a similar theorem for the Markov switching model but since
the model is inherently non-linear, this is impossible. To make progress with models
of this kind one needs an appropriate equilibrium concept di�erent from that used for
linear RE models. Speci�cally, one would like to describe solutions that are stationary
in a Markov-switching model. In this paper we adopt a solution that is widely used
by engineers and control theorists, that of mean square stability.1

IV. Determinate and Indeterminate Solutions and the Taylor
Principle

In single regime models there is a simple test for uniqueness that involves counting
unstable roots and nonpredetermined variables.2 Rational expectations equilibrium
is unique if the number of non-predetermined variables is equal to the number of
unstable roots. This root counting condition lies behind the Taylor principle; that
monetary equilibrium will be locally unique if the central bank follows a monetary
policy in which it raises the interest rate in response to in�ation with a response
coe�cient greater than one in absolute value.

In an innovative paper, Troy Davig and Eric Leeper (2005, 2006) have tackled the
question of how to think about indeterminacy in models of regime switching. Their

1The reader is referred to Costa Fragoso and Marques (2004). For linear models, one should note
that mean square stability is the same as the conventional de�nition of stationarity.

2As Sims (2001) points out, this test does not always work and the exact condition is more
complicated.
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idea is to �nd a condition, similar to the Taylor principle, that applies to MSRE
models. Davig and Leeper de�ne determinacy to mean the existence of a unique
bounded solution to a stochastic linear system. By imposing the restriction that the
interest rate coe�cient of the Taylor rule must be positive, they �nd a condition
they call a `long-run Taylor principle' that involves a combination of interest rate
response coe�cients and transition probabilities. If this condition holds there exists
a unique bounded equilibrium. If it fails there may be multiple equilibria driven by
non-fundamental shocks.

We have two criticisms of the Davig-Leeper result. First, we think the positiv-
ity restriction is not merely for mathematical convenience, but rather an indication
that there does not exist in general an equivalence between the existence of a unique
bounded equilibrium for a MSRE model and the generalized Taylor principle derived
from the linear RE counterpart. Economically, even if one believes that it is ap-
propriate for a benevolent policy maker to choose a positive value for the interest
rate response coe�cient to in�ation in the Taylor rule, one still cannot rule out the
possibility that an incompetent or ill-informed policy maker might react di�erently.
Moreover, Rotemberg and Woodford (1999a, Page 83) have shown that the optimal
Taylor rule may involve a negative value of this parameter. In Section VII we exploit
the fact that one or more regimes may be associated with a negative value for the in-
�ation response coe�cient to provide an example where there exist multiple bounded
sunspot equilibria even when the generalized Taylor principle is satis�ed.

Second, we think that the boundedness criterion is too strong. To see why, note
that stationarity and boundedness are equivalent for a stochastic linear system when
all the shocks are restricted to be bounded. In practice, the distributions of the shocks
are often assumed to be unbounded (e.g., normal or gamma distributions). But as
long as the stochastic process is stationary, the approximation around the steady state
remains reasonable. Similarly, the mean-square-stable process for a Markov-switching
model is stable around the steady state, which is what one needs for reasonable
approximations to the underlying economic environment.

V. The MSV Solution

In a companion to this paper, Farmer Waggoner and Zha (2006) suggest MSV
solutions as a way to make progress in the study of MSRE models. The purpose of
this section is to show that a solution of this kind exists to the model de�ned above
when in�ation is chosen to be the state variable. To prove this, and to derive the
MSV solution in terms of πt, we need to rule out a knife edge parameter case. That
is the purpose of the following assumption.

Assumption 1. The matrix
[
φ1 − ρp1,1 −ρp2,1

−ρp1,2 φ2 − ρp2,2

]
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is invertible.

Given assumption 1 we can prove the following proposition.

Proposition 1. Let
[
g1

g2

]
=

[
φ1 − ρp1,1 −ρp2,1

−ρp1,2 φ2 − ρp2,2

]−1 [
1

1

]
. (5)

Under Assumption 1,
πt = gξtrt +

κξt

φξt

εt, (6)

is a solution to the model (3).3

Proof. The proof follows directly from Assumption 1 and the fact that
Et

[
gξt+1

]
= p1,ξtg1 + p2,ξtg2.

¤
It follows from Theorems 3 and 4 in Farmer Waggoner and Zha (2006) that Eq.

(6) is also the MSV solution. Following standard usage in the probability literature
on Markov switching models (e.g., Costa Fragoso and Marques (2004)), we de�ne
stationarity to be the existence of limiting �rst and second moments and it follows
directly from Proposition 1 and the stationarity of rt and εt that the MSV solution
is stationary.

De�nition 1 (Mean Square Stability). A stochastic process {xt}∞t=1 is mean square
stable if there exist real numbers µ and ϕ such that

lim
s→∞

Et [xt+s] = µ,

lim
s→∞

Et [x2
t+s] = ϕ.

Mean square stability is stronger than the existence of a �nite limit of �rst mo-
ments and it is the appropriate stability concept if one wants to conduct statistical
inference. It is widely used in the engineering literature and has been used in an eco-
nomic application, among others, by Svensson and Williams (2005). An alternative
to mean square stability is covariance stationarity in the sense of Hamilton (1994),
or asymptotic covariance stationarity � a slightly weaker condition. Asymptotic co-
variance stationarity implies mean square stability, although the converse is not true
in general. However, for the class of solutions studied in this paper, Theorem 3.33
of Costa Fragoso and Marques (2004) implies that these two notions are equivalent.
Because of this fact, we will refer to solutions that satisfy the mean-square stability
criterion as �stationary�.

Proposition 2. The MSV solution (6) is stationary.
3Our model is similar to that studied by Davig and Leeper (2005). The di�erence is that they

use Et [rt+1] in the Fisher equation whereas, following King (2000) and Woodford (2003), we use rt.
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Proof. The proof follows directly from De�nition 1. ¤
Since the MSV solution exists for all the values of transition probabilities that

satisfy Assumption 1, it does not depend on the ergodic nature of transition proba-
bilities.

VI. A Class of Indeterminate Solutions

Since the existence of a unique determinate solution is often viewed as a desirable
feature of a model (Rotemberg and Woodford (1999b), King (2000)), we address the
question: Is the MSV solution (6) unique in the class of all stationary solutions?
Often the answer to this question is negative and we illustrate this point by �rst
constructing a class of indeterminate solutions with the condition lim

s→∞
Et [xt+s] < ∞

as in the linear RE case. In the next section, we restrict solutions to stationary ones
only. Our example is instructive since it suggests that the idea that MSRE models
are either determinate or indeterminate may not be fruitful.

Our model contains two state variables, πt and rt. However, all of the equilibria that
we are interested in can be summarized a by a linear combination of these variables,
de�ned as follows;4

xt = πt − gξtrt. (7)
Proposition 1 and Eq. (7) allow us to make the following change of variables.

Proposition 3. The in�ation equation, Eq. (3), is equivalent to the following trans-
formed equation in the variable xt,

xt =
1

φεt

Et [xt+1] +
κξt

φεt

εt. (8)

Proof. See Appendix 3. ¤
Rearranging Eq. (8), one can write the following expressions for xt+1 and Et [xt+1],

xt+1 = φεt

(
xt − κξt

φεt

εt

)
+ ηt+1, (9)

Et [xt+1] = φεt

(
xt − κξt

φεt

εt

)
, (10)

where ηt+1 is an expectational error such that Et [ηt+1] = 0.
Next, we make an assumption that characterizes the kind of central banker that

acts in each regime. The idea is that the policy maker in regime 1 is an in�ation hawk
and the policy maker in regime 2, an in�ation dove. In line with the existing literature
on the Taylor principle, we do not assume that the in�ation response coe�cients, φ1

and φ2, must be positive.
4Since rr is exogenous and stationary, and since we assume that ξt is ergodic and that gξtxt is

uncorrelated with rt, xt will be stationary if and only if πt is stationary. Although we will work
with xt directly, the reader should bear in mind that the behavior of the in�ation variable πt can be
recovered from Eq. (7).
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Assumption 2.
|φ1| > 1 > |φ2| > 0.

Assumption 2 implies that the two separate single-state models, where φξt = φi

for all t, have di�erent determinacy properties. If we impose the assumption that a
solution must satisfy the additional boundary condition,

lim
s→∞

Et [xt+s] = µ < ∞, (11)

then the linear model with φξt = φ1 has a unique solution represented by the equation

xt =
κ1

φ1

εt, (12)

and the linear model with φξt = φ2 is associated with a continuum of indeterminate
sunspot solutions of the form,

xt = φ2xt−1 − κ2εt−1 + γt, (13)

where {γt}∞t=1 is an independent stochastic process with zero mean and �nite variance
that is independent of {νt}∞t=1 and {ξt}∞t=1.5

De�nition 2. A mean zero stochastic process {ηt+1}∞t=1, and an initial condition x1

generate a solution to Eq. (8) if the sequence {xt+1}∞t=1 de�ned by Eq. (9) satis�es
the condition

lim
s→∞

Et [xt+s] = µ < ∞.

Note that we de�ne a solution to be a stochastic process with convergent �rst
moments that satis�es Eq. (8) regime by regime and that transits between regimes
according to the transition probabilities (pi,j). We now show how to construct a
large class of processes {{ηt+1}∞t=1 , x1} that generate solutions to Eq. (9) and that
are di�erent from the MSV solution. We �rst rule out a pathological case in which
our result breaks down.

Assumption 3. The transition matrix satis�es the condition,

p2,2 > 0.

This assumption rules out the case where the second regime is a re�ecting state.
De�ne

x1 =

{
κ1

φ1
ε1 if ξ1 = 1,

x̄ ∈ R if ξ1 = 2.
(14)

5Note that γt could also be a function of εt and may or may not contain a component that is
independent of εt. Sunspot models of this kind are often interpreted as over-reaction to fundamentals.
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For t ≥ 1, de�ne ηt+1 by

ηt+1 =





κ1

φ1
εt+1, ξt = 1 and ξt+1 = 1,

γt+1 + κ2

φ2
εt+1, ξt = 1 and ξt+1 = 2,

κ1

φ1
εt+1 − φ2

(
xt − κ2

φ2
εt

)
, ξt = 2 and ξt+1 = 1,

γt+1 + κ1

φ1
εt+1 + φ2

p1,2

p2,2

(
xt − κ2

φ2
εt

)
, ξt = 2 and ξt+1 = 2.

(15)

Since p2,2 > 0, the expectational errors {ηt+1}∞t=1 are �nite. Note that time begins
at date 1 but the forecast errors begin with η2. We now state the main result of our
paper.

Proposition 4. The pair {{ηt+1}∞t=1 , x1}, as de�ned in Eqs. (14) and (15), generates
a solution to Eq. (8) for any arbitrary zero mean sequence {γt+1}∞t=1. This indeter-
minate solution takes the following form:

xt+1 =

{
κ1

φ1
εt+1, if ξt = 1 and ξt+1 = 1,

γt+1 + κ2

φ2
εt+1, if ξt = 1 and ξt+1 = 2.

(16)

xt+1 =

{
κ1

φ1
εt+1, if ξt = 2 and ξt+1 = 1,

γt+1 + κ2

φ2
εt+1 + φ2

p2,2

(
xt − κ2

φ2
εt

)
, if ξt = 2 and ξt+1 = 2.

(17)

Proof. See Appendix B. ¤

A solution consists of an initial condition and a rule for updating expectations; this
rule is implicitly de�ned by the endogenous shock process (15). Since the realization
of x1 is a function of the expectation, E1 [x2], the initial condition (14) imposed on
the realization of x1 is equivalent to the initial condition imposed on the expectation
of x2. If ξt = 1, E1 [x2] = 0. If ξt = 2, the initial condition E1 [x2] does not constrain
x1 and in this case, our de�nition of equilibrium picks an arbitrary initial condition,
x̄.

The former discussion is informative because it suggests why the search for a global
uniqueness condition such as the generalized Taylor principle is unlikely to be suc-
cessful. If the economy begins in state 1, the regime of the in�ation hawk, the value
of in�ation is pinned down by fundamentals. If instead the economy begins in state
2, that is, if the in�ation dove goes �rst, the initial value of in�ation is unconstrained
and there exist multiple self-ful�lling paths. Since this simple model contains no
lagged state variables there is no history to constrain actions; all behavior is purely
forward-looking and there is a sense in which the world begins again in every period.6
In regime 2 anything goes but, in regime 1, the economy must `snap back' to a point
pinned down by fundamentals.

6There may even be other equilibria of this model, that we have not explored, in which the
existence of an in�ation dove permits non-fundamental shocks to hit the system even in the regime
of the in�ation hawk.
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VII. Stationary Solutions

In this section we illustrate our results by providing two examples of indeterminate
solutions. The �rst example satis�es the mean-square stability condition so that the
solution is stationary. The second example satis�es the more restricted Davig-Leeper
de�nition of a stationary equilibrium for which the stationary invariant distribution
is bounded. In both examples, we show that the generalized Taylor principle fails to
hold.

We begin with a general characterization of stationary solutions based on Proposi-
tion 4 which implies that while in regime 2, xt will be serially dependent and governed
by the process:

xt+1 =
φ2

p2,2

(
xt − κ2

φ2

εt

)
+

κ2

φ2

εt+1 + γt+1. (18)

If
∣∣∣ φ2

p22

∣∣∣ is less than one, xt will be stationary in regime 2.7 But even if
∣∣∣ φ2

p22

∣∣∣ is greater
than one, xt may still be globally stationary if the rate at which xt is increasing in the
second regime is small relative to its expected duration. The following proposition
gives the general condition for determining when xt is stationary.

Proposition 5. If the Markov chain is ergodic and
∣∣∣ φ2√

p2,2

∣∣∣ < 1, then the solutions to
Model (8), given by Eqs. (14), (16), and (17), are mean-square-stable.

Proof. See Appendix C. ¤
Notice that the stationarity of our constructed sunspot equilibrium depends only

on the values of the parameters in the second regime and on the probability of staying
in that regime. Notably, it does not depend on the probability of staying in the �rst
(determinate) regime nor does it depend on the degree to which the in�ation hawk
(the policy maker in the determinate regime) follows an active policy.

Our �rst example, illustrated in Figure 1, displays the MSV solution in the �rst
panel and the paths of in�ation associated with two di�erent sunspot equilibria in
the second and third panels. These two sunspot equilibria are associated with two
di�erent parameterizations of the economy.

For both parameterizations we set ρ = 0.9, φ1 = 2.2, p1,1 = 0.98, and p2,2 = 0.995.
These parameter values correspond to monetary policy that would generate a unique
equilibrium if the �rst regime were treated in isolation. The parameterizations di�er
by allowing alternative values of the interest rate coe�cient in regime 2. In one case
we set φ2 = 0.9951 and in the other φ2 = 0.9949. In both cases monetary policy in the
second regime would lead to indeterminacy if the regime were treated in isolation.
With φ2 = 0.9951, however, the generalized Taylor principle of Davig and Leeper
(2006) implies that the MSV solution would be the only stationary solution. With

7The assumption that a process is stationary in each regime is not enough to ensure overall
stationarity. One can easily modify our example to produce a solution that is stationary for each
regime in isolation, but non-stationary for the system that allows regimes to switch.
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Figure 1. Simulated paths of in�ation (deviations from the target)
with φ1 = 2.2, p1,1 = 0.98, p2,2 = 0.995.

φ2 = 0.9949, their uniqueness condition is violated. However, using the mean-square-
stability criterion, the indeterminate solutions are stationary in both cases.8

It is worth noting that the paths associated with the policies φ2 = 0.9951 and
φ2 = 0.9949 are hard to tell apart even though one violates the generalized Tay-
lor principle and the other does not. In both cases, in�ation in the indeterminate

8We calibrated this example by setting εt to be N (0, 1) and νt to be N (0, 0.01) . The values of
κ1
φ1

and κ2
φ2

are 0.4 and 0.2 so that the size of the fundamental shock in the �rst regime is twice the
size in the second regime. The initial condition is π1 = g1r1 + κ1

φ1
ε1. All the paths are based on

the same sequence of the real interest rate rt and the same sequence of fundamental shocks εt. The
non-fundamental shock γt is set to κ2

φ2
εt when the second regime occurs and set to zero when the

�rst regime occurs. Therefore, in the indeterminate equilibrium the size of the random shock is the
same for both regimes. These assumptions allow us to isolate the e�ects of indeterminacy from the
the e�ects of di�erent shock variances across regimes.
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equilibrium is much more persistent than that in the MSV equilibrium. This is con-
sistent with Clarida, Galí, and Gertler's (2000) interpretation of the U.S. data. They
attribute the serially-dependent and volatile behavior of in�ation in the 1970s to in-
determinate monetary policy and the remarkable reduction in volatility and serial
dependence of the Volcker-Greenspan years to the successful application of a Taylor
rule that implements an MSV equilibrium. In both examples presented in Figure 1,
the stochastic process that describes equilibrium is stable around the steady state.
This is precisely our de�nition of stationarity for MSRE models.

Now we turn to our second example which satis�es the more restricted de�nition
of boundedness favored by Davig and Leeper. Here we set φ1 = 24/9 and φ2 = −1/3

with p11 = 0.01 and p22 = 0.5. The policy maker in the �rst regime is an in�ation
hawk, while monetary policy in the second regime would lead to indeterminacy if this
regime were absorbing. If the structural shocks {εt} are bounded, the indeterminate
solution represented by Eq. (18) will be bounded as well. Hence, this example satis�es
the uniqueness criterion of Davig and Leeper (2006) which claims to establish an
equivalence between the existence of a unique bounded solution to an MSRE model
and the generalized Taylor principle derived from the linear RE counterpart. Our
example demonstrates that a positive value of φi in both regimes is essential for this
result to hold. If this condition breaks down, as may happen in the planning solution
discussed by Rotemberg and Woodford (1999a, Page 83), there will exist sunspot
equilibria in general whenever there is a sunspot equilibrium in at least one regime
considered in isolation. This example raises serious questions about the validity of
the generalized Taylor principle for MSRE models.

VIII. Conclusion

We have shown in this paper that the distinction between linear and MSRE models
is important but its consequences for equilibrium are not well understood. We have
demonstrated that the properties of uniqueness, stationarity and boundedness, even
for the simple MSRE model of monetary policy studied in this paper, are fundamen-
tally di�erent from those of linear models. Characterizing the full class of equilibria
remains a challenging task. Contrary to the existing literature, we have shown that
multiple equilibria are more prevalent than commonly thought and that the dynamic
behavior of equilibrium sample paths depends in subtle ways on both the current and
the past realized regimes. Regrettably, the generalized Taylor principle does not hold
universally, even for a simple MSRE model.



INDETERMINACY 12

Appendix A. Proof of Proposition 3

Substituting Eq. (7) into Eq. (8) we have,

πt = gξtrt +
1

φξt

Et[πt+1 − gξt+1rt+1] +
κξt

φεt

εt.

Substituting for rt+1 from (4) and collecting terms leads to

πt =
1

φξt

Et[πt+1] +
1

φξt

rt[φξtgξt − ρ(p1,ξtg1 + p2,ξtg2)] +
κξt

φξt

εt.

or since
p1,ξtg1 + p2,ξtg2 ≡ Etgξt+1

πt =
1

φξt

Et[πt+1] +
1

φξt

rt[φξtgξt − ρEtgξt+1 ] +
κξt

φξt

εt,

Note that if ξt = 1, it follows from (5) that

(φ1 − ρp1,1)g1 − ρp2,1g2 = 1.

Similarly, if ξt = 2, it follows from (5) that

−ρp1,2g1 + (φ2 − ρp2,2)g2 = 1.

Hence we have
πt =

1

φξt

Et [πt+1] +
1

φξt

rt +
κξt

φξt

κξtεt,

which is equivalent to (3).

Appendix B. Proof of Proposition 4

We �rst show that ηt+1 has zero conditional mean. If ξt = 1,

Et [ηt+1] = p1,1
κ1

φ1

Et [εt+1] + p2,1

(
Et [γt+1] +

κ2

φ2

Et [εt+1]

)
= 0,

and if ξt = 2,

Et [ηt+1] = p1,2

(
κ1

φ1

Et [εt+1]− 1

a2

(
xt − κ2

φ2

εt

))

+ p2,2

(
Et [γt+1] +

κ2

φ2

Et [εt+1] + φ2
p1,2

p2,2

(
xt − κ2

φ2

εt

))
= 0.

Next, we derive the solution to Eq. (8). Given x1, the sequence {xt+1}∞t=1 can be
constructed recursively from the following transition equations, which are derived by
using Eq. (9) and De�nition (15). When ξt = 1,

xt+1 =





1
a1

(
xt − κ1

φ1
εt

)
+ κ1

φ κξt
φεt

εt+1, if ξt+1 = 1,

1
a1

(
xt − κ1

φ1
εt

)
+ γt+1 + κ2

φ2
εt+1, if ξt+1 = 2;

(A1)
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and when ξt = 2,

xt+1 =

{
κ1

φ1
εt+1, if ξt+1 = 1,

φ2

(
xt − κ2

φ2
εt

)
+ γt+1 + κ2

φ2
εt+1 + φ2

p1,2

p2,2
(xt − σ2εt) , if ξt+1 = 2.

(A2)

Since we have imposed the initial condition x1 = κ1

φ1
ε1, it follows by induction from

Eqs. (A1) and (A2) that when ξt+1 = 1, xt+1 = κ1

φ1
εt+1 for all t ≥ 1. The transition

from state 1 to state 2 can be simpli�ed using this initial condition, and Eq. (A1)
can be written as the expression (16). Eq. (A2) can be also simpli�ed, using the fact
that p1,2 + p2,2 = 1, to yield the expression (17). The initial condition (14) and Eqs.
(16) and (17) completely characterize the evolution of xt for t = 1, ...∞.

Finally, we show that lims→∞ Et [xt+s] = 0. Using Eqs. (16) and (17), we obtain
the following expression:

Et [xt+1] =

{
0, if ξt = 1,

φ2

(
xt − κ2

φ2
εt

)
, if ξt = 2.

A simple induction argument, again using Eqs. (16) and (17) shows that,

Et [xt+s] = Et [Et+1 [xt+k]] =

{
0, if ξt = 2,

(φ2)
s
(
xt − κ2

φ2
εt

)
, if ξt = 2.

Because |φ2| < 1, lims→∞ Et [xt+s] = 0. Since {γt+1} is arbitrary, we have completed
the proof that {{ηt+1}∞t=1 , x1} generates multiple solutions.

Appendix C. Proof of Proposition 5

Theorem 3.33 of Costa, Fragoso, and Marques (2004) implies that, if the Markov
chain is ergodic, we need only show that solutions given by (14), (16), and (17) are
mean-square stable when εt and γt are zero. By Theorem 3.9 of CFM, the stability
condition is equivalent to showing that there exist constants 1 ≤ β < ∞ and 0 < ζ < 1

such that
E1

[
x2

t

] ≤ βζt−1x2
1,

for t ≥ 1. When εt and γt are zero, xt will be non-zero only if ξ1 = · · · = ξt = 2. In
this case, xt =

(
1

a2p2,2

)t−1

x1 and this event occurs with probability pt−1
2,2 . Thus

E1

[
x2

t

]
= pt−1

2,2

(
φ2

p2,2

)2(t−1)

x2
1,

=

(
φ2√
p2,2

)2t−2

x2
1.

The results now follow from the assumption that
∣∣∣ φ2√

p2,2

∣∣∣ < 1.
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