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Conventional economic theory assumes that the utility of a person or a

family is independent of the consumption of others. Yet a visit to the park-

ing lot of a suburban shopping mall may tempt an economist to question this

independence. Has the proliferation of sport utility vehicles owned by non-

adventurous people in moderate climates resulted from factors that are the

focus of traditional economic analysis, such as increased income or wealth,

superior hedonic traits, or sharp reductions in the prices of these vehicles

or their complementary goods, such as gasoline? Pending the econometric

resolution of this question, I will pursue the temptation to question the inde-

pendence of a person’s utility from the consumption of others. A half century

ago, Duesenberry (1949) questioned the apparent preference for Buicks over

Chevrolets and developed a theory of consumption and saving based on the

assumption that a person’s utility is a function of that person’s consumption

relative to the average level of consumption in society.1

1“It is well known that there are societies in which prestige is gained by the acquisition

of some sort of good which is completely useless in fulfilling any need whatever. In spite

of the complete uselessness of the things in question, their acquisition may be vital to

the acquisition of prestige or maintenance of self-esteem. A great deal of effort may be

expended in acquiring these useless items. In our society people may think that they

expend effort to get a Buick instead of a Chevrolet because the Buick is more comfortable
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I will assume that consumers use an endogenous benchmark level of con-

sumption to evaluate their utility. I will specify the benchmark level of

consumption to be a weighted geometric average of the contemporaneous

consumption of all consumers in the economy. In addition to a person’s own

consumption, I will include in the utility function a person’s own consump-

tion relative to the benchmark level of consumption. Abel (1990, 1999) and

Campbell and Cochrane (1999) have shown that including a benchmark level

of consumption in the utility function can help account for various puzzling

empirical moments of asset returns. Here my focus is on the allocation of

consumption across generations and across time and on aggregate capital

accumulation.2 I will modify the Diamond (1965) overlapping generations

or goes faster. But this does not in the least prove that part of the basis for the purchase

is not the maintenance of self-esteem.” (Duesenberry, 1949, p. 29)
2Dupor and Liu (2002) develop a taxonomy for various features of consumption ex-

ternalities. If utility is u (c, b), where c is the individual’s own consumption and b is a

benchmark that equals the average level of consumption by others, they define jealousy as

∂u/∂b < 0 and keeping up with the Joneses as ∂2u/∂c∂b > 0. They show that keeping up

with the Joneses is important for asset pricing considerations and jealousy is important

for consumption allocations. The utility function I use in this paper displays jealousy. It

also displays keeping up with the Joneses for the case in which the curvature parameter

α, introduced in equation (11), is greater than one.
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model to include a benchmark level of consumption in the utility function of

individuals. The introduction of a benchmark level of consumption leads to

a straightforward modification of the equilibrium balanced growth path in a

competitive economy. More interesting is the modification of the balanced

growth path that maximizes a social welfare function that assigns geometri-

cally declining weights to the utility of subsequent generations. The socially

optimal balanced growth path is characterized by the same Modified Golden

Rule as in standard neoclassical growth models. However, the concern for

consumption relative to the benchmark level of consumption introduces an

optimality condition on the allocation of consumption across generations that

are simultaneously alive.

After deriving the competitive balanced growth path and the socially op-

timal balanced growth path, the next step is to characterize a set of tax

and transfer policies that will induce the competitive economy to attain the

social optimum. In a standard neoclassical growth model without a bench-

mark level of consumption, a balanced-budget lump-sum intergenerational

tax/transfer scheme, which could be interpreted as pay-as-you-go social se-

curity, can be used to achieve the appropriate level of saving for the economy

to attain the Modified Golden Rule. However, an additional fiscal tool is
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needed to attain the socially optimal balanced growth path when, in addition

to the level of their own consumption, consumers care about their consump-

tion relative to the benchmark level of consumption. This appearance of

the benchmark level of consumption in the utility function introduces an ex-

ternality in consumption, and, not surprisingly, the attainment of the social

optimum requires a distortionary tax.3 In particular, a capital income tax

or subsidy, offset by lump-sum rebates or taxes, and accompanied by the

appropriate social security system will induce the competitive economy to

attain the social optimum.

At some level, the use of a lump-sum intergenerational tax/transfer sys-

tem to attain the Modified Golden Rule and the use of distortionary taxes on

capital income to correct a consumption externality are not surprising. Yet,

in principle, the signs of these taxes could be positive or negative. Specifi-

cally, the optimal intergenerational tax/transfer system could involve trans-

fers from young consumers, who are working, to old consumers who are re-

tired, as in a social security system, or the transfers could be in the opposite

direction, from old to young. Also, the optimal tax rate on capital income

3Duesenberry (1949), Boskin and Sheshinski (1978), Ljungqvist and Uhlig (2000), and

de la Croix and Michel (1999) have derived optimal distortionary taxes in the presence of

various sorts of consumption externalities.
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could be positive, negative, or zero. I address these potential ambiguities by

deriving conditions on exogenous parameters that determine the direction of

the transfers in the optimal social security system and the sign of the optimal

tax rate on capital income. In the special, but perhaps focal, case in which

benchmarks are equally-weighted geometric averages of the contemporane-

ous consumption of all consumers, I derive a surprising result: if the social

planner is more patient than individuals, the optimal tax rate on capital in-

come is positive. This result is surprising because an increase in the social

planner’s patience would increase the optimal capital-labor ratio, and one

might be tempted to think that the social planner would foster capital accu-

mulation by subsidizing capital. But as I show in Section 5, and summarize

intuitively in the concluding remarks in Section 6, the greater patience of the

social planner leads the social planner to favor later, i.e., younger, genera-

tions. The social planner can tilt a given amount of aggregate consumption

in any period toward the younger generation alive in the period by taxing

capital income at a positive rate. In addition to analytic results about the

signs of the optimal taxes, I present illustrative calculations to demonstrate

that, in plausible cases, the optimal lump-sum intergenerational (social se-

curity) transfers can be from young to old and that the optimal tax rate on
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capital income can be positive.

I use a standard neoclassical production function, which I present in Sec-

tion 1. Then in Section 2 I define the benchmark level of consumption and

incorporate it into the utility function of an individual consumer. Using the

utility function with benchmark levels of consumption, I solve the optimal

consumption decision of a young consumer and characterize the equilibrium

balanced growth path in a competitive economy in Section 3. I specify the

objective function of the social planner in Section 4 and characterize the

socially optimal balanced growth path. This characterization includes the

standard Modified Golden Rule and a condition that determines the optimal

intergenerational allocation of consumption in each period. In Section 5, I

derive and characterize the optimal tax and transfer policies that induce a

competitive economy to attain the socially optimal balanced growth path.

Concluding remarks are presented in Section 6. The appendixes contain

derivations that would be distracting if presented in the text.
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1 The Production Function

Consider a closed economy with overlapping generations of consumers who

live for two periods. Each generation consists of a continuum of identical

consumers. Let Nt be the measure of the consumers born at the beginning

of period t, and let GN ≡ Nt+1
Nt
≥ 1 be the constant growth rate of the

population. Consumers born at the beginning of period t inelastically supply

one unit of labor in period t when they are young, and they supply no labor

in period t+ 1 when they are old.4 Thus, the measure of workers in period

t is Nt.

The economy uses capital and labor to produce a homogenous good ac-

cording to the production function Yt = F (Kt,AtNt) where Yt is aggregate

output in period t, Kt is the aggregate capital stock at the beginning of pe-

riod t, and At is an index of labor-augmenting productivity which grows at

4By specifying an inelastic supply of labor for young consumers and zero labor supply

for old consumers, I am cutting off an important channel leading to non-zero optimal cap-

ital income taxes in Erosa and Gervais (2002) and Garriga (2001). I chose this inelastic

specification of labor supply in order to focus on the impact of benchmark levels of con-

sumption, which are absent in Erosa and Gervais (2002) and Garriga (2001). Ljungqvist

and Uhlig (2000) derive optimal taxes (on labor income) with consumption externalites

and endogenous labor supply, but their model does not include capital.
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a constant rate GA ≡ At+1
At
≥ 1. The production function F (, ) is strictly

increasing, concave, and linearly homogeneous in its two arguments Kt and

AtNt. It is convenient to write the production function in intensive form as

Yt = AtNtf (kt) (1)

where kt ≡ Kt

AtNt
is the effective capital-labor ratio, f (0) = 0, f 0 (kt) > 0,

f 0 (0) = ∞, f 0 (∞) = 0, and f 00 (kt) < 0. Define εf (kt) ≡ ktf 0(kt)
f(kt)

as the

elasticity of the production function f (kt) with respect to kt. For positive

finite values of kt, 0 < εf < 1. The marginal product of capital is f
0 (kt) and

the marginal product of labor is At [f (kt)− ktf 0 (kt)]. I will assume that the

labor market is competitive so that the wage income of a young consumer in

period t is

wt = At [f (kt)− ktf 0 (kt)] . (2)

Output produced during period t has three uses. An amount Ct is

consumed by each of the Nt young consumers during period t, an amount

Xt is consumed by each of the Nt−1 old consumers in period t, and the

remaining output is devoted to creating the capital stock at the beginning

of period t + 1, Kt+1 = At+1Nt+1kt+1. Therefore, the aggregate resource
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constraint in period t is

AtNtf (kt) = NtCt +Nt−1Xt +At+1Nt+1kt+1. (3)

Using the assumptions that population and productivity grow at constant

rates, GN and GA, respectively, rewrite the aggregate resource constraint as

f (kt) =
Ct
At
+

1

GN

Xt
At
+GAGNkt+1. (4)

Along a balanced growth path in this economy, the ratios kt,
Ct
At
, and Xt

At

are all constant. Therefore, both Ct and Xt grow at the rate GA, and the

ratio Xt
Ct
is constant along a balanced growth path,

2 The Utility Function with Benchmark Con-

sumption

I will specify an individual consumer’s utility function to depend in each pe-

riod on the consumer’s own consumption in that period and on a benchmark

level of consumption that is a weighted geometric average of the contempo-

raneous consumption of other consumers. To specify the benchmark level

of consumption more precisely, I will first introduce some notation for con-

sumption. Let ct be the consumption in period t of an individual young
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consumer (who was born at the beginning of period t), and let xt be the

consumption in period t of an individual old consumer (who was born at the

beginning of period t− 1). The variables Ct and Xt defined earlier are the

per capita consumption levels of the young and old generations, respectively,

and are not affected by the decisions of an individual consumer. An indi-

vidual consumer born at the beginning of period t chooses ct and xt+1 and

takes as given the values of Ct, Xt, Ct+1, and Xt+1. In equilibrium ct = Ct

and xt = Xt because all consumers in a given generation are identical.

Now consider the benchmark levels of consumption for a consumer born

at the beginning of period t. Let νyt be the benchmark level of consump-

tion for a young consumer in period t and let νot+1 be the benchmark level

of consumption for an old consumer in period t + 1. In each period the

benchmark level of consumption is a weighted geometric average of the per

capita consumption of the two living generations. Specifically,

νyt = C
GN

θy+GN
t X

θy
θy+GN
t , 0 ≤ θy ≤ 1 (5)

and

νot+1 = C
θoGN

θoGN+1

t+1 X
1

θoGN+1

t+1 , 0 ≤ θo ≤ 1. (6)

The parameter θy in equation (5) is the weight of the consumption of a

representative old consumer relative to the consumption of a representative
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young consumer in the specification of the benchmark for young consumers.

The restriction that θy ≤ 1 implies that the benchmark for young consumers

places at least as much weight on the consumption of a fellow young consumer

as on the consumption of an old consumer. Similarly, the restriction θo ≤ 1 in

equation (6) implies that the benchmark for old consumers places at least as

much weight on the consumption a fellow old consumer as on the consumption

of a young consumer.

To simplify notation, I rewrite the specification of the benchmarks in

equations (5) and (6) as

νyt = C
1−εy
t X

εy
t , 0 ≤ εy ≡ θy

θy +GN
≤ 1

1 +GN
(7)

and

νot+1 = C
εo
t+1X

1−εo
t+1 , 0 ≤ εo ≡ θoGN

θoGN + 1
≤ GN
1 +GN

. (8)

The restrictions on εy and εo in equations (7) and (8) imply that εy +

εo ≤ 1. If the benchmark for young consumers, νyt , is an equally-weighted

geometric average of the consumption of all consumers alive in period t,

then θy = 1 and εy =
1

1+GN
. If the benchmark for old consumers, νot+1, is an

equally-weighted geometric average of the consumption of all consumers alive

in period t + 1, then θo = 1 and εo =
GN
1+GN

. Thus, when both benchmarks
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are equally-weighted geometric averages of consumption of all consumers,

εo + εy = 1 and εo = εyGN .

It will be useful to define the (intratemporal) intergenerational consump-

tion ratio σt ≡ Xt
Ct
. With this definition, the benchmark levels of consump-

tion in equations (7) and (8) can be written as

νyt = Ctσ
εy
t (9)

and

νot+1 = Xt+1σ
−εo
t+1 = Ct+1σ

1−εo
t+1 . (10)

Now I will specify a utility function that incorporates benchmark levels

of consumption. The utility of a consumer born at the beginning of period t

is

Ut =
1

1− α

µ
ct
(νyt )

η

¶1−α
+ β

1

1− α

Ã
xt+1¡
νot+1

¢η
!1−α

(11)

where α > 0, β > 0, and 0 ≤ η < 1. The felicity in any given period can be

viewed as an isoelastic function (with elasticity 1−α) of a geometric average

of the consumer’s own consumption and the consumer’s own consumption

relative to the benchmark level of consumption. For example, the consumer’s

felicity when young in period t is an isoelastic function of ct

(νyt )
η , which can be

expressed as c1−ηt

³
ct
νyt

´η
. The parameter η measures the (geometric) weight
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of the ratio of the consumer’s own consumption to the benchmark level of

consumption. If η = 0, this ratio does not enter the utility function, and

utility is simply an isoelastic function of the consumer’s own consumption,

as in the conventional formulation of isoelastic utility. If η were equal to

one, then the consumer’s own consumption would affect utility only through

its ratio to the benchmark, ct
νyt
, as in Abel (1990, 1999)5. However, I rule out

this case here by restricting η to be strictly less than one.6

I will rewrite the utility function in equation (11) using the expressions

for νyt in equation (9) and νot+1 in equation (10) to obtain

Ut = u
y
t + βuot+1 (12)

5In Abel (1990), the benchmark level of consumption in period t depends on the per

capita level of consumption in period t− 1, rather than on the contemporaneous level of

per capita consumption. In considering this difference, note that in Abel (1990) a period

is one year, but in the current paper a period is one half of an adult lifetime. Also, in

Abel (1990), the parameter γ, which corresponds to η in the current notation, is set equal

to one in the numerical calibration, though the theoretical analysis does not restrict γ to

be equal to one.
6Although η = 1 has interesting asset pricing implications, this value of η changes the

nature of the social planner’s problem. Specifically, if η = 1, the utility of a representative

consumer born at the beginning of period t is unaffected by a doubling of ct and xt+1, if

Ct, Xt, Ct+1, and Xt+1 are also doubled.
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where

uyt = u
y
t (ct, Ct,Xt) ≡

1

1− α

Ã
ctC

−η
t

µ
Xt
Ct

¶−ηεy!1−α
(13)

and

uot+1 = u
o
t+1 (xt+1, Xt+1, Ct+1) ≡

1

1− α

µ
xt+1X

−η
t+1

µ
Xt+1
Ct+1

¶ηεo¶1−α
. (14)

Note that the time subscripts in equations (13) and (14) refer to the time

period in which consumption takes place rather than to the period in which

the consumer is born. Thus, uot+1 is the felicity during period t+1 of an old

consumer who was born at the beginning of period t.

3 Competitive Economy

In this section I examine the behavior of a competitive economy in which con-

sumers have the utility function specified in equation (12) and the aggregate

resource constraint is described by equation (4). I will introduce two fiscal

instruments, which can be described as a lump-sum pay-as-you-go social se-

curity system and a capital income tax. I focus on these two instruments

because they will turn out to be useful in directing a competitive economy

to a socially optimal balanced growth path, as I will show in Section 5.

First consider the pay-as-you-go social security system. Let T yt be a
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lump-sum tax paid by each young consumer in period t, and let T ot be a

lump-sum tax paid by each old consumer in period t. If T ot is negative,

then old consumers are recipients of transfers from the government and (if

T yt > 0) the tax/transfer system involving T yt and T
o
t has the character of a

social security system. I will impose the condition that the social security

system is financed on a balanced-budget pay-as-you-go basis by requiring

NtT
y
t +Nt−1T

o
t = 0, which implies

T ot = −GNT yt . (15)

Social security taxes and benefits are indexed to the level of productivity

measured by At. Specifically,

T yt =
At
A0
T y0 . (16)

The second fiscal instrument is a capital income tax that is rebated via

lump-sum transfers to old consumers. Let τK be the rate at which (gross)

capital income is taxed. The pre-tax, or social, gross rate of return on capital

held from period t to period t+ 1 is f 0 (kt+1). Let Rt+1 denote the after-tax

gross rate of return on capital held from period t to period t+ 1, which is

Rt+1 = (1− τK) f
0 (kt+1) . (17)
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Pre-tax gross capital income per old consumer in period t+1 is the marginal

product of capital, f 0 (kt+1), multiplied by the amount saved by each young

consumer in period t, wt − T yt − Ct. Therefore, the capital income tax per

old consumer is τKf
0 (kt+1) (wt − T yt − Ct). Each old consumer in period

t+ 1 receives a lump-sum rebate, qt+1, of the capital income tax, so

qt+1 = τKf
0 (kt+1) (wt − T yt − Ct) . (18)

The lump-sum tax on old consumers, T ot+1, and the lump-sum rebate of

the capital income tax, qt+1, can be combined into a single variable eT ot+1 ≡
T ot+1 − qt+1, which is the net lump-sum tax paid by each old consumer in

period t + 1. I have chosen to specify the separate components, T ot+1 and

qt+1, of eT ot+1 to help interpret optimal fiscal policy.
The lifetime budget constraint of a consumer born at the beginning of

period t, taking account of the lump-sum social security taxes and transfers,

the capital income tax, and the lump-sum rebate of the capital income tax,

is

xt+1 = (wt − T yt − ct)Rt+1 − T ot+1 + qt+1. (19)

A consumer born at the beginning of period t chooses ct and xt+1 to

maximize utility in equation (12) subject to the budget constraint in equation
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(19). Along a balanced growth path σt = σ and Ct+1
Ct

= GA, and this decision

problem is isomorphic to the following simple problem:

max
ct,xt+1

1

1− α
c1−αt + βM (σ) σαG

−η(1−α)
A

1

1− α
x1−αt+1 (20)

subject to equation (19) where

M (σ) ≡ σεM (21)

and7

εM ≡ −α− (1− α) η (1− εy − εo) < 0. (22)

To interpretM (σ), note that βM (σ)G
−α−η(1−α)
A equals the private marginal

rate of substitution,MRSP (ct, xt+1) ≡ β
∂uot+1/∂xt+1

∂uyt /∂ct
, evaluated in equilibrium

along a balanced growth path (so that xt+1 = σct+1 = σGAct). Thus, βM (σ)

is the private marginal rate of substitution along a balanced growth path in

the absence of productivity growth.

In Appendix A I show that along an equilibrium balanced growth path8

βRM (σ) = G
α+η(1−α)
A . (23)

7To show that εM < 0, rewrite εM as εM = −1 + (1− α) (1− η (1− εy − εo)). Since

0 ≤ εy + εo ≤ 1 and η < 1, we have 1 − η (1− εy − εo) > 0. Therefore, since α > 0,

(1− α) (1− η (1− εy − εo)) < 1 and εM < 0.
8Liu and Turnovsky (2002) show that with inelastic labor supply and identical

infinitely-lived consumers, the steady-state rate of return on capital is not affected by

consumption externalities. However, with overlapping generations of finitely-lived con-

17



Equation (23) is the intertemporal Euler equation of an individual consumer

along a balanced growth path.9 It describes the long-run relationship be-

tween two endogenous variables, the after-tax rate of return, R, and the inter-

generational relative consumption ratio, σ. In this relationship the elasticity

of R with respect to σ is −εM > 0 so that the R and σ are positively related.

4 The Optimal Balanced Growth Path

In this section I analyze the path of consumption and capital accumulation

that would be chosen by a social planner who maximizes a particular social

welfare function. The social planner chooses levels of consumption for each

consumer, and, in principle, could choose different levels of consumption for

two identical consumers born at the same date. However, I will assume that

the social planner attaches equal weights to the utility of all consumers in a

given generation. Since the consumption of each consumer is too small to af-

fect the per capita consumption of that consumer’s generation, all consumers

sumers, the equilibrium rate of return along a balanced growth path depends on the

consumption externalities as captured by η and M (σ), which depends on η, εy, and εo,

in equation (23).

9Since MRSP (ct, xt+1) = βM (σ)G
−α−η(1−α)
A , equation (23) can be rewritten as R×

MRSP (ct, xt+1) = 1.
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in a given generation have the same benchmark levels of consumption as each

other. Therefore, they have the same utility functions as each other, and,

since utility is strictly concave in an individual consumer’s own consump-

tion, the social planner will choose equal consumption for all consumers in a

generation.

Suppose that the social welfare function in period t is

∞P
j=−1

ρjGjNUt+j (24)

where

0 < ρGNG
(1−α)(1−η)
A < 1. (25)

Because the generation born at the beginning of period t−1 consumes during

period t (as well as during period t−1), it is important that the social planner

assigns a positive weight to Ut−1 when making decisions at the beginning of

period t. Therefore, the index j in equation (24) runs from −1 to ∞ rather

than from 0 to ∞. The parameter ρ in the social welfare function is the

discount factor applied to the total utility of a given generation relative to

the total utility of the preceding generation, which has 1
GN

as many people

as the given generation.10 The restriction in equation (25) is necessary and

10I thank an anonymous referee for suggesting that I apply the discount factor ρj to the

total utility of a generation, GjNUt+j , rather than to per capita utility, Ut+j .
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sufficient for the sum in equation (24) to be finite along a balanced growth

path.11

Since the social planner chooses equal consumption for all consumers in

a generation, the utility of a representative consumer born at the beginning

of period t is found by setting ct = Ct in equation (13) and xt+1 = Xt+1

in equation (14), using the definition of the intergenerational consumption

ratio, σt ≡ Xt
Ct
, and substituting equations (13) and (14) into equation (12)

to obtain

Ut =
1

1− α

³
C1−ηt σ

−ηεy
t

´1−α
+ β

1

1− α

¡
C1−ηt+1 σ

1−η+ηεo
t+1

¢1−α
. (26)

The standard Modified Golden Rule in overlapping generations economies12

is a special case of the current model in which η = 0 so that benchmarks do

not enter the utility function. In this special case, the social welfare function

is maximized by an appropriate path of the aggregate capital stock, which

implies an appropriate path of aggregate consumption. In the absence of

consumption externalities (η = 0) the social planner has no particular target

11Along a balanced growth path, Ct+1
Ct

= Xt+1

Xt
= GA, which implies that

Ut+1
Ut

=

G
(1−α)(1−η)
A . Therefore, along a balanced growth path, equation (24) is a geometric

series in which each term is ρGNG
(1−α)(1−η)
A times as large as the preceding term. This

series has a finite sum if and only if 0 < ρGNG
(1−α)(1−η)
A < 1.

12See, for example, Samuelson (1968) and Blanchard and Fischer (1989, p. 100).

20



for the intergenerational consumption ratio, σt. Indeed, the social welfare

function is maximized by the intergenerational allocation of consumption

that arises when individual consumers facing market rates of return—without

capital income taxes—choose their optimal allocations of consumption over

their own lifetimes.

The introduction of consumption externalities (η > 0) implies that the

social planner must target the intergenerational consumption ratio as well as

the path of capital accumulation. We can think of the social planner as first

choosing the optimal path of aggregate consumption and capital accumula-

tion. Then, given this optimal path of aggregate consumption, the social

planner chooses the intergenerational consumption ratio σt. Unfortunately,

the social planner’s objective function is not concave in σt for all permissible

parameter values. To assure that the optimal value of σt is characterized by

the first-order conditions derived in Appendix B, I will assume henceforth

that α ≥ 1. This assumption does not guarantee that the social planner’s

objective function is concave in σt, but it does imply that the value of the

social welfare function approaches −∞ both as σt approaches 0 and as σt

approaches ∞.13 Therefore, the optimal value of σt is strictly positive and

13Equation (14) implies that when xt = Xt, u
o
t =

1
1−α

³
X1−η+ηεo
t C−ηεot

´1−α
. For a
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finite. Since the social welfare function is continuously differentiable in σt

for positive σt, the optimal value of σt will satisfy the first-order condition.

Let k∗ denote the socially optimal value of kt along a balanced growth

path. As shown in Appendix B, k∗ satisfies

ρf 0 (k∗) = Gα+η(1−α)
A . (27)

Equation (27) is a generalization of the well-known Modified Golden Rule.

In the standard formulation of preferences without benchmark levels of con-

sumption, η = 0 and the Modified Golden Rule in equation (27) takes the

more familiar form, ρf 0 (k∗) = Gα
A.
14 In the absence of productivity growth

given amount of aggregate consumption in period t, limσt→0Xt = 0. If α > 1, then

limσt→0 uot = −∞. If α = 1, then uot = (1− η + ηεo) lnXt − ηεo lnCt so limσt→0 uot =

−∞. Therefore, if α ≥ 1, then limσt→0 u
o
t = −∞. Equation (13) implies that when

ct = Ct, u
y
t =

1
1−α

³
C
1−η+ηεy
t X

−ηεy
t

´1−α
. For a given amount of aggregate consumption

in period t, limσt→∞Ct = 0. If α > 1, then limσt→∞ u
y
t = −∞. If α = 1, then

uyt = (1− η + ηεy) lnCt − ηεy lnXt so limσt→∞ u
y
t = −∞. Therefore, if α ≥ 1, then

limσt→∞ u
y
t = −∞.

14The formulations of the Modified Golden Rule presented by Samuelson (1968) and

Blanchard and Fischer (1989) include the population growth rate GN , but equation (27)

does not explicitly include GN . Samuelson and Blanchard and Fischer use a social welfare

function that is a weighted average of the utility of the representative consumer in each

generation, but the social welfare function in equation (24) is a weighted average of the total
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(GA = 1), the value of k
∗ is not affected by the introduction of benchmark

levels of consumption. In the presence of productivity growth (GA > 1), the

introduction of benchmark levels of consumption will increase k∗ if α > 1,

but will have no effect on k∗ if α = 1.

Let σ∗ denote the optimal value of σt along a balanced growth path. It

is convenient to analyze σ∗ by defining the function

Ψ (r) ≡ 1− η + ηεo + ηεor

(1− η + ηεy) r + ηεy
r, for r > 0. (28)

Appendix E shows thatΨ
³

σ∗
GN

´
equals the ratio MRS

S(Ct,Xt+1)
MRSP (ct,xt+1)

, whereMRSS (Ct,Xt+1)

is the social marginal rate of substitution between current consumption of

the young and next period’s consumption of the old along a socially op-

timal balanced growth path, and MRSP (ct, xt+1) is the private marginal

rate of substitution between these two consumptions along a socially opti-

mal balanced growth path. The function Ψ (r) is useful in characterizing the

socially optimal balanced growth path. Appendix D proves the following

lemma, which describes various properties of Ψ (r).

utility of each generation. With a constant population growth rate GN , this difference is

simply a normalization. To illustrate, define bρ ≡ ρGN . The social welfare function in

equation (24) can be written as
∞P

j=−1
bρjUt+j and the Modified Golden Rule in equation

(27) can be written in the more familiar form as bρf 0 (k∗) = GNGα
A when η = 0.
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Lemma 1 The function Ψ (r) defined in equation (28) for r > 0 has the

following properties:

(a) Ψ (r) > 0;

(b) Ψ0 (r) ≥ 0, with strict inequality if ηεy > 0 or if ηεo > 0;

(c) 0 ≤ εΨ ≡ rΨ0(r)
Ψ(r)

< 1;

(d) if ηεy = ηεo = 0, then Ψ (r) ≡ 1;

(e) if ηεy > 0 and ηεo > 0, then Ψ
³
εy
εo

´
= 1;

(f) if ηεo = 0 and ηεy > 0, then Ψ (r) < 1;

(g) if ηεy = 0 and ηεo > 0, then Ψ (r) > 1;

(h) (i) limr→0 1rΨ (r) =
1−η+ηεo

ηεy
> 0, if ηεy > 0;

(ii) limr→0 1rΨ (r) =∞, if ηεy = 0;

(i) limr→∞ 1
r
Ψ (r) = ηεo

1−η+ηεy .

Parts (a), (b), and (c) of Lemma 1 state that Ψ (r) is positive, increasing,

and has an elasticity with respect to r that is less one. When the private

marginal rate of substitution, MRSP (ct, xt+1), equals the social marginal

rate of substitution, MRSS (Ct, Xt+1), along a socially optimal balanced

growth path, Ψ (r) = 1. Parts (d) and (e) of Lemma 1 describe cases

in which Ψ (r) = 1, and parts (f) and (g) provide sufficient conditions for

Ψ (r) to be, respectively, less than one and greater than one. Finally, parts
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(h) and (i) of Lemma 1 describe limiting behavior of Ψ (r) that is helpful in

ensuring that the characterization of optimal σ presented later is correct for

the case in which α = 1.

Appendix B shows that the optimal value of the intergenerational con-

sumption ratio σ∗ satisfies

βM (σ∗)Ψ
µ

σ∗

GN

¶
= ρ. (29)

To interpret equation (29), use equation (27) to show that G
α+η(1−α)
A /f 0 (k∗)

equals the social discount factor ρ, and substitute this expression for ρ into

equation (29) to obtain

·
βM (σ∗)G−α−η(1−α)A Ψ

µ
σ∗

GN

¶¸
f 0 (k∗) = 1. (30)

Since the private marginal rate of substitution, MRSP (ct, xt+1), equals

βM (σ∗)G−α−η(1−α)A , and since Ψ
³

σ∗
GN

´
is the ratio of the social marginal

rate of substitution to the private marginal rate of substitution, the term in

square brackets in equation (30) is the social marginal rate of substitution,

MRSS (Ct, Xt+1). Equation (30) simply states that the product of the social

marginal rate of substitution and the social rate of return, f 0 (k∗), equals one,

which is a standard Euler condition for intertemporal optimization.

Equation (29) characterizes the optimal intergenerational consumption
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ratio, σ∗. I will devote the remainder of this section to analyzing the prop-

erties and implications of this equation. I will focus on two cases in which

I can prove that there is a unique positive value of σ that satisfies equation

(29):

• Case I: α > 1.

• Case II: α = 1 and 0 < ηεo
1−η+ηεy <

ρGN
β
< 1−η+ηεo

ηεy
.

The following lemma, which is proved in Appendix D, is useful in ana-

lyzing these cases.

Lemma 2 In Cases I and II, εM + εΨ < 0 for r > 0.

Lemma 2 implies that the left side of equation (29) is a strictly decreasing

function of σ in Cases I and II, so that if there is a value of σ that satisfies

this equation, that value is unique. Also, because the left side of equation

(29) is continuous in nonnegative σ, the existence of a positive value of σ

that satisfies this equation can be proved by showing that the left side is

greater than ρ for σ = 0 and is less than ρ for sufficiently large positive σ.

These results are summarized in the following proposition, which is proved

in Appendix D.
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Proposition 1 In Cases I and II, there exists a unique positive value of σ

that satisfies equation (29).

Anticipating the results in Section 5.1 on the optimal capital income

tax rate, it will be important to determine whether the optimal value of

σ is greater than, equal to, or less than εyGN
εo
. Lemma 2 implies that

βM (σ)Ψ
³

σ
GN

´
is strictly decreasing in σ so that if βM (z)Ψ

³
z
GN

´
> ρ,

then σ∗ is greater than z. Similarly, if βM (z)Ψ
³

z
GN

´
< ρ, then σ∗ is less

than z. These arguments are summarized in the following lemma.

Lemma 3 In Cases I and II, sign [σ∗ − z] = sign
h
M (z)Ψ

³
z
GN

´
− ρ

β

i
.

Part (e) of Lemma 1 states that Ψ
³
εy
εo

´
= 1 if ηεy > 0 and ηεo > 0, so that

Lemma 3 implies

Proposition 2 In Cases I and II, sign
h
σ∗ − εyGN

εo

i
= sign

h
M
³
εyGN
εo

´
− ρ

β

i
,

if ηεy > 0 and ηεo > 0.

Proposition 2 provides a condition on exogenous parameters that deter-

mines whether σ∗ is greater than, equal to, or less εyGN
εo
. It is easiest to

interpret this condition in the case in which both benchmarks are equally-

weighted geometric averages of the contemporaneous consumption of all con-
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sumers, so that θy = θo = 1, which implies that εyGN
εo

= 1. The fact that

M (1) = 1 implies the following corollary.

Corollary 1 In Cases I and II, if θy = θo = 1, then sign [σ∗ − 1] =

sign [β − ρ].

According to Corollary 1, if both benchmarks are equally-weighted geo-

metric averages of the consumption of all consumers, a social planner with

discount factor ρ equal to the time preference discount factor β in individual

utility functions will equalize the consumption of young and old consumers

in each period along a balanced growth path. If the social planner is more

patient than individuals, so that ρ > β, then the social planner will allocate

a higher level of consumption to young consumers than to old consumers in

each period along a balanced growth path. To understand this result, con-

sider the social planner’s problem in period t along a balanced growth path.

Suppose that the social planner has chosen how much capital to carry into

period t+1, and is deciding how to allocate the remaining output to Ct and

Xt. In period t, having chosen kt+1, the social planner chooses Ct and Xt to

maximize

uyt (Ct, Ct, Xt) + ρ−1G−1N βuot (Xt,Xt, Ct) (31)
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where uyt () and u
o
t () are defined equations (13) and (14). The first term in

equation (31), uyt (Ct, Ct,Xt), is increasing in Ct and decreasing in Xt, and

the second term, ρ−1G−1N βuot (Xt, Xt, Ct), is increasing in Xt and decreasing

in Ct. An increase in
ρ
β
reduces the weight on uot (Xt,Xt, Ct) and thus leads

the social planner to shift current consumption away from Xt toward Ct,

which is a reduction in σt. This argument suggests that the optimal value

of σ is a decreasing function of the ratio ρ
β
. The argument does not depend

on the assumption in Corollary 1 that εyGN = εo, and Proposition 3 below

relaxes this assumption.

To analyze formally the effects of ρ and β on the optimal value of σ,

totally differentiate equation (29) with respect to σ and ρ
β
to obtain

(εM + εΨ)
dσ

σ
=
d (ρ/β)

ρ/β
. (32)

Equation (32) and Lemma 2 imply the following proposition.

Proposition 3 In Cases I and II, dσ∗
d(ρ/β)

= 1
εM+εΨ

σβ
ρ
< 0.

Since the functions M () and Ψ () depend on preference parameters but

not on technology, inspection of equation (29) proves the following proposi-

tion.
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Proposition 4 σ∗ is independent of the specification of the production func-

tion, f (kt), and of the growth rate of productivity, GA.

5 Fiscal Policy Along the Optimal Balanced

Growth Path

In Section 4, I derived the values of the intergenerational relative consump-

tion ratio, σ∗, and the capital-labor ratio, k∗, along the socially optimal

balanced growth path. In this section, I derive the fiscal policies—specifically

the tax and transfer policies—that induce a competitive economy to attain

these values along a balanced growth path. The strategy for determining

the optimal tax and transfer policies is to assume that the competitive econ-

omy has attained the socially optimal balanced growth path and then to

determine the values of the tax and transfer parameters that are consistent

with competitive equilibrium along this balanced growth path. I will confine

attention to deterministic—indeed constant—tax rates.
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5.1 Optimal Tax on Capital Income

To avoid considerations of dynamic consistency that can arise with a capital

income tax, I assume that the fiscal authority can credibly commit to main-

tain a constant tax rate on capital income. To calculate the optimal tax rate

on capital income, divide the expression for the competitive private rate of

return on capital implied by equation (23) by the expression for the optimal

marginal product of capital in equation (27), to obtain

R

f 0 (k∗)
=

ρ

βM (σ∗)
. (33)

Use equation (17) to rewrite the left side of equation (33) as 1 − τK . Use

equation (29) to rewrite the right side of equation (33) as Ψ
³

σ∗
GN

´
. There-

fore, equation (33) can be rearranged to obtain

τ ∗K = 1−Ψ

µ
σ∗

GN

¶
. (34)

where τ ∗K is the optimal tax rate on gross capital income.
15 The expression

in equation (34), along with the fact that the function Ψ () depends only on
15Erosa and Gervais (2000) and Garriga (2001) show that it is generally optimal to

tax (or subsidize) capital income if individuals have labor-leisure choices throughout their

lives. However, this result does not apply to the model I present here because labor

is inelastically supplied in the first period of life and zero labor is supplied in the second

period of life. In the model I present here, the tax rate on capital along the socially optimal
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preference parameters, implies the following corollary to Proposition 4.16

Corollary 2 The optimal tax rate on capital income, τ ∗K, is independent of

the specification of the production function, f (kt), and of the growth rate of

productivity, GA.

To understand the role of the capital income tax along the socially optimal

balanced growth path, recall thatMRSS (Ct, Xt+1) = Ψ
³

σ∗
GN

´
×MRSP (ct, xt+1),

so Ψ
³

σ∗
GN

´
represents the wedge between the private and social marginal

rates of substitution along a socially optimal balanced growth path. Along

a balanced growth path, equation (17) states that R = (1− τK) f
0 (k), so

that 1−τK is the wedge between the private rate of return, R, and the social

rate of return, f 0 (k). Setting 1− τK = Ψ
³

σ∗
GN

´
makes the wedge between

the private and social rates of return exactly offset the wedge between the

balanced growth path would be zero in the absence of the consumption externalities that

I study here.
16Ljungqvist and Uhlig (2000) derive a related result in a model with identical consumers

and endogenous labor supply, but without capital. They show that the optimal tax rate

on labor income is independent of technology, if, as in the model I present here, the

benchmark level of consumption depends only on the contemporaneous consumption of

other consumers.
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private and social marginal rates of substitution.17

Equation (34) implies that the sign of the optimal capital income tax

rate depends on whether Ψ
³

σ∗
GN

´
is greater than, less than, or equal to

one. Specifically, if Ψ
³

σ∗
GN

´
< 1, the optimal capital income tax rate is

positive; if Ψ
³

σ∗
GN

´
> 1, the optimal capital income tax rate is negative; and

if Ψ
³

σ∗
GN

´
= 1, the optimal capital income tax rate is zero. Properties (f),

(g), and (d) in Lemma 1 imply, respectively, parts (a), (b), and (c) in the

following proposition.

Proposition 5 (a) If ηεo = 0 and ηεy > 0, then τ ∗K > 0. (b) If ηεy = 0

and ηεo > 0, then τ ∗K < 0. (c) If ηεy = ηεo = 0, then τ ∗K = 0.

If ηεo = 0 and ηεy > 0, the consumption of old consumers imposes a

negative externality on young consumers. Since old consumers do not take

account of this externality, the value of σ ≡ Xt
Ct
in a competitive economy

without taxes would be higher than in the social optimum. To reduce the
17Along the socially optimal balanced growth path, 1 = MRSS (Ct,Xt+1) × f 0 (k∗) =

Ψ
³

σ∗
GN

´
×MRSP (ct, xt+1)×f 0 (k∗) =MRSP (ct, xt+1)× (1− τ∗K) f

0 (k∗) = 1, where the

first equality reflects the Euler equation for the socially optimal intertemporal allocation

of consumption, the second equality usesMRSS (Ct,Xt+1) = Ψ
³

σ∗
GN

´
×MRSP (ct, xt+1),

the third equality uses equation (34), and the fourth equality reflects the Euler equation

for private consumers.
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value of σ in a competitive economy, the government could reduce the private

rate of return by introducing a positive tax rate on capital income.18 By

contrast, if ηεy = 0 and ηεo > 0, the consumption of young consumers

imposes a negative externality on old consumers, so the value of σ ≡ Xt
Ct
in a

competitive economy without taxes is lower than in the social optimum. In

this case, a negative tax rate on capital income would increase the private

rate of return and increase σ. If neither generation imposes an externality

on the other generation (ηεy = ηεo = 0), the optimal capital income tax rate

is zero.19

18Recall from equation (23) and the discussion below that equation that σ is positively

related to R along a competitive balanced growth path.
19In de la Croix and Michel (1999), the optimal tax rate on capital income is negative

because of an asymmetry in the specification of benchmark consumption in the utility

function. In their model, consumers live for three periods, and consume during middle

age and old age. Middle-aged consumers have a benchmark level of consumption equal

to the middle-age consumption of the previous generation, but there is no benchmark for

old-age consumption. However, if their model were altered so that there is no benchmark

for middle-aged consumption, but there is a benchmark for old-age consumption equal to

the old-age consumption of the previous generation, then the optimal tax rate on capital

would be positive, rather than negative. In the model I present here, in which consumers

live for two periods (and the benchmarks depend on the contemporaneous rather than the

lagged consumption of others), there are benchmark levels of consumption in both periods
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Proposition 5 gives the sign of the optimal capital income tax rate if

ηεyεo = 0. For the case in which ηεyεo > 0, equation (34) and parts (b) and

(e) of Lemma 1 imply

sign [τ ∗K] = −sign
·
σ∗ − εyGN

εo

¸
. (35)

Equation (35) and Proposition 2 imply the following proposition.

Proposition 6 In Cases I and II, if ηεo > 0 and ηεy > 0, then sign [τ
∗
K ] =

sign
h
ρ
β
−M

³
εyGN
εo

´i
.

Since ρ, β, GN , εy, and εo are exogenous parameters, Proposition 6 provides

a condition on exogenous parameters that determines whether the optimal

capital income tax rate is positive, negative, or zero. This condition takes a

simple form when the benchmarks are equally-weighted geometric averages

of the consumption of all consumers so that θy = θo = 1, which implies that

εyGN
εo

= 1.

Corollary 3 In Cases I and II, if η > 0 and if θy = θo = 1, then sign [τ
∗
K ]

= sign [ρ− β].

of a consumer’s life and the optimal tax rate on capital could be negative, positive, or

zero, as illustrated by Proposition 5.
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With benchmarks that are equally-weighted geometric averages of con-

sumption, if the social discount factor, ρ, equals the time preference discount

factor, β, the optimal tax rate on capital income is zero. Perhaps surpris-

ingly, if the social planner is more patient than individuals, so that ρ > β,

the optimal tax rate is positive. If ρ > β, the social planner wants to

shift consumption toward later generations of consumers, and thus in each

period wants to shift consumption away from old consumers toward young

consumers. By imposing a positive tax rate on capital income, consumers

are induced to shift consumption away from old age toward their youth.

Equation (34) shows that for given values of η, εy, and εo, the optimal

value of the tax rate on capital income depends only on σ∗
GN
. Differentiating

equation (34) and using part (b) of Lemma 1 proves the following proposition.

Proposition 7 For given values of ηεy and ηεo in Cases I and II, if ηεy > 0

or if ηεo > 0, then
dτ∗K
dσ∗ = −Ψ0

³
σ∗
GN

´
1
GN
< 0.

Corollary 4 In Cases I and II,
dτ∗K
d( ρβ )

> 0.

As suggested by the discussion following Corollary 3, an increase in ρ
β

shifts the optimal consumption toward later, younger, generations. The

desired increase in consumption of the young relative to consumption of the
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old can be achieved by an increase in τ ∗K, which reduces the private rate of

return on capital and induces consumers to shift consumption from old age

toward youth.

5.2 Optimal Lump-Sum Intergenerational Tax/Transfer

Now consider the optimal lump-sum intergenerational tax/transfer, which

can be interpreted as a lump-sum pay-as-you-go social security system. In

period t along a balanced growth path, the aggregate tax on young con-

sumers, which follows from equation (16), is Nt
At
A0
T y0 and total output is

AtNtf(kt). Define τ y∗ ≡ T y0
A0f(k∗)

as the tax on young consumers, expressed

as a fraction of total output, along the optimal balanced growth path. I

show in Appendix C that the optimal tax on young consumers, τ y∗, is

τ y∗ = τ y∗ (σ∗,Λ) ≡ σ∗Λ−GN
σ∗ +GN

εf , (36)

where20

Λ ≡ 1− εf
εf

− ρGNG
(1−α)(1−η)
A > −1. (37)

20To prove that Λ > −1, rewrite Λ as Λ =
h
1
εf
− ρGNG

(1−α)(1−η)
A

i
− 1. Observe that

the term in brackets is positive because εf < 1 implies 1
εf
> 1 and equation (25) states

that ρGNG
(1−α)(1−η)
A < 1. Since the term in brackets is positive, Λ > −1.
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Equation (36) expresses τ y∗ as a function of an endogenous variable (σ∗)

and a function of parameters (Λ). The following lemma describes the effect

of the endogenous variable, σ∗, on τ y∗.

Lemma 4 ∂τy∗(σ∗,Λ)
∂σ∗ = Λ+1

(σ∗+GN )2
GNεf > 0.

Lemma 4 states that if the optimal intergenerational consumption ratio,

σ∗, increases, the optimal lump-sum tax on young consumers, τ y∗, increases.

To understand this result, consider an increase in τ y, which transfers re-

sources from young consumers to old consumers. An increase in the tax

on young consumers reduces their saving, and an increase in the transfer

to old consumers also reduces saving by consumers when they are young.

The reduction in saving reduces the capital-labor ratio, k, along a balanced

growth path. The reduction in k increases the social rate of return, f 0(k),

which increases the private rate of return, R. The increase in the private

rate of return, R, induces consumers to substitute from current consumption

to future consumption, thereby increasing the intergenerational consumption

ratio, σ. Thus, an increase in the lump-sum tax, τ y, can be used to increase

the intergenerational consumption ratio, σ, as stated by Lemma 4.

Lemma 4 can be applied to determine the effect on τ y∗ of a change in the

time preference discount factor of consumers, β, because β affects σ∗, but
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has no effect on Λ. Proposition 3 implies that an increase in β increases

σ∗, which, according to Lemma 4, increases τ y∗. This reasoning proves the

following proposition.

Proposition 8 In Cases I and II, dτ
y∗
dβ
> 0.

An increase in the time preference discount factor, β, increases the amount

of saving in the competitive economy and thus would increase the capital-

labor ratio to a level higher than the Modified Golden Rule level, k∗. An

increase in the tax levied on young workers can offset the increase in saving

and maintain the capital-labor ratio equal to k∗.

The effect of ρ on τ y∗ operates through two channels: an increase in ρ

reduces σ∗ (Proposition 3), which reduces τ y∗; and an increase in ρ reduces

Λ, which also reduces τ y∗. This argument proves the following proposition.

Proposition 9 In Cases I and II, dτ
y∗
dρ
< 0.

An increase in the social discount factor, ρ, increases the Modified Golden

Rule capital-labor ratio, k∗, and requires an increase in saving, which can be

induced by a reduction in the lump-sum tax on young workers.

I have referred to the lump-sum intergenerational tax/transfer system as

a social security system, because it transfers resources from young consumers
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to old consumers, if τ y > 0. However, it is possible for τ y to be negative,

in which case the tax/transfer system is a ”reverse social security system”

transferring resources from old consumers to young consumers. It is evident

from equation (36) that the sign of the optimal value of τ y∗ is the same as

the sign of σ∗Λ−GN . Therefore, if Λ > 0, the sign of τ y∗ is the same as the

sign of σ∗−Λ−1GN , which, according to Lemma 3, is the same as the sign of

M (Λ−1GN)Ψ (Λ−1)− ρ
β
. The following proposition provides the condition

on the exogenous parameter Λ that determines the sign of τ y∗.

Proposition 10 In Cases I and II, if Λ ≤ 0, then τ y∗ < 0, and if Λ > 0,

then sign [τ y∗] = sign
h
M (Λ−1GN)Ψ (Λ−1)− ρ

β

i
.

5.3 Numerical Example

I have derived expressions for the optimal values of the lump-sum tax levied

on young consumers, τ y∗, and the capital income tax rate, τ ∗K. I have

also derived conditions to determine whether each of the optimal tax rates

is positive or negative. In this section, I provide a numerical example,

including a modest sensitivity analysis, to illustrate that both τ y∗ and τ ∗K

can be positive in plausible cases.

In this example, I assume that the labor share in income is constant and
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equal to 2
3
, which implies that εf =

1
3
. I assume that the curvature param-

eter α in the utility function equals 4, which implies that the intertemporal

elasticity of substitution equals 0.25. To specify the values of the parameters

ρ, β, GA, and GN , I need to specify the length of a time period. Since a time

period in the model is one half of an adult lifetime, I will assume that a period

is 30 years. I set the time preference discount factor of consumers, β, equal

to (0.98)30, so that the rate of time preference is approximately 2% per year.

I assume that the social planner is more patient than individual consumers

and set the social discount factor, ρ, equal to (0.99)30, which implies that

the social rate of time preference is approximately 1% per year. Multifactor

productivity in the United States grew at the rate of 1.2% per year from 1948

to 1998. In the model in this paper, labor-augmenting productivity growth

is the only source of multifactor productivity growth. Attributing all of the

growth in multifactor productivity to growth in labor-augmenting productiv-

ity, A, implies that the growth rate of A is
³

1
1−εf

´
(1.2%) per year.21 Since

εf =
1
3
, the growth rate of A is 1.8% per year, and GA = (1.018)

30. During

21If the aggregate production function is Yt = θtK
εf
t N

1−εf
t , the rate of multifactor

productivity growth is the growth rate of θt. This production function can be rewritten

as Yt = K
εf
t (AtNt)

1−εf where At ≡ θ
1

1−εf
t . Thus, the growth rate of At equals

1
1−εf

times the growth rate of θt.
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the period 1948-1998, the population of the United States grew at the rate

of 1.2% per year. However, this period included the baby boom. Instead

of using data from the baby boom to calibrate the population growth rate,

I use the Census Bureau’s middle population projection over the entire 21st

century to calculate a projected growth rate of 0.7% per year.22 Therefore,

I set GN = (1.007)
30.

I assume that the benchmark functions are symmetric in the sense that

θy = θo, and I present results for three values of η and for three values of

θy = θo, and the implied values of εy and εo, in Table 1. The row with

η = 0 shows the results for the standard model without benchmark levels of

consumption. The column with θy = θo = 0 (which implies εy = εo = 0)

shows the results under the assumption that a consumer’s benchmark level of

consumption depends only on the per capita consumption of the consumer’s

own generation, and is independent of the per capita consumption of the

other generation. Since the optimal social marginal product of capital,

f 0 (k∗), is independent of θy and θo (equivalently, it is independent of εy and

εo), I present the value of f
0 (k∗) once at the beginning of each row, rather

22The projections were taken from http:// www.census.gov/ population/ projections/

nation/ summary/ np-t1.txt; Internet Release Date: January 13, 2000, Revised Date:

February 14, 2000.
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than repeating the same value in each of the columns of the row. The social

marginal product of capital, f 0 (k∗), is the gross rate of return over a 30-

year period. To help gauge the magnitude of f 0 (k∗), I also the present the

annualized gross social marginal product of capital, f 0ann ≡ (f 0 (k∗))1/30. For

instance, when η = 0.25, the optimal 30-year social gross marginal product

of capital, f 0 (k∗), is 7.698, which implies an annualized gross social marginal

product of capital, f 0ann, of 1.0704, or equivalently, a net social marginal

product of capital, f 0ann − 1, of 7.04% per year.

Each cell of Table 1 contains three rows, which present the values of the

optimal intergenerational consumption ratio, σ∗, the optimal capital income

tax rate τ ∗K , and the optimal lump-sum tax on young consumers, τ y∗. To

help interpret the tax rate on capital, I will make two adjustments. First, I

will annualize the tax rate. Equation (17) implies that the optimal capital

income tax rate, τ ∗K , can be rewritten as 1−τ ∗K =
R

f 0(k∗) , where R and f
0 (k∗)

are gross rates of return over a 30-year period. Define τ ∗K,ann as the optimal

tax rate on gross capital income, if the capital income tax is levied annually.

This annual capital income tax rate satisfies 1− τ ∗K,ann =
Rann
f 0ann

where Rann ≡

R1/30 is the annualized gross private rate of return. Therefore,23 τ ∗K,ann =

231 − τ∗K,ann = Rann
f 0ann

=
³

R
f 0(k∗)

´1/30
= (1− τ∗K)

1/30. Therefore, τ∗K,ann = 1 −
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1 − (1− τ ∗K)
1/30. The second adjustment converts the tax rate on gross

capital income, f 0ann, to the tax rate on net capital income, f
0
ann−1. Letting

τ ∗K,net be the tax rate on annual net capital income,
24 τ ∗K,net =

f 0ann
f 0ann−1τ

∗
K,ann.

Table 1 reports the values of τ ∗K and τ ∗K,net. For instance, when η = 0.5 and

θy ≡ θo = 1, Table 1 shows that τ
∗
K = 0.043, which implies that the tax rate

on net annual capital income, τ ∗K,net, is 0.027, or equivalently, 2.7%.

The optimal lump-sum intergenerational tax on young consumers, τ y∗, is

positive throughout Table 1, ranging from 2.8% when η = 0.5 and θy = θo = 0

to 7.0% when η = 0. In the United States, the value of τ y is about 5%.25

Consistent with Proposition 5, the optimal capital income tax is zero when

η = 0 or θy = θo = 0. For the cells in Table 1 in which η and εy = εo are

positive, τ ∗K,net is positive but small, with a maximum value of 2.7% when

η = 0.5 and θy = θo = 1.

Table 2 presents a simple sensitivity analysis for the values of the annual

gross marginal product of capital, f 0ann, the intergenerational consumption

(1− τ∗K)
1/30.

24The net and gross tax rates on annual capital income satisfy 1 +¡
1− τ∗K,net

¢
(f 0ann − 1) =

¡
1− τ∗K,ann

¢
f 0ann. Therefore, τ∗K,net = τ∗K,ann

f 0ann
f 0ann−1 .

25In the United States in 2001, Social Security payroll taxes (OASDI) were $516.4 billion

and GDP was $10,082 billion, so τy was equal to 0.051.
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ratio, σ∗, the tax rate on capital, shown both as the tax rate on the 30-

year gross marginal product of capital, τ ∗K, and the tax rate on the net

annual marginal product of capital, τ ∗K,net, and the lump-sum intergenera-

tional tax/transfer, τ y∗, along a socially optimal balanced growth path. The

baseline for this sensitivity analysis uses the parameter values in Table 1 with

η = 0.5 and θy = θo = 1. Each row of the baseline changes one parameter

value at a time.

Since θy = θo = 1 and η > 0, Corollaries 1 and 3 apply throughout Table

2. Therefore, since ρ ≥ β throughout Table 2, Corollary 1 implies that

σ∗ ≤ 1, and Corollary 3 implies that τ ∗K ≥ 0. For the two rows in which

ρ = β (the row with ρ = (0.98)30 and the row with β = (0.99)30), the optimal

intergenerational consumption ratio, σ∗, equals one, as implied by Corollary

1, and the optimal tax rate on capital is zero, as implied by Corollary 3. With

the exception of only two rows, Table 2 presents a consistent set of results:

the optimal tax rate on net capital income, τ ∗K,net, is small (5.5% or less) and

the lump-sum tax/transfer system imposes a tax on young consumers and

gives a transfer to old consumers. In the two rows that deviate slightly from

these results (the row with ρ = 1.00 and the row with α = 2), the optimal

tax rate on net capital income is slightly higher, but still smaller than 10%,
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and the lump-sum tax/transfer system subsidizes young consumers by taxing

old consumers (a reverse social security system), but the tax rate is smaller

than 3%.

6 Concluding Remarks

I have examined the implications for saving and capital accumulation of as-

suming that consumers care about their consumption relative to a benchmark

level of consumption in addition to caring directly about their own consump-

tion. In a competitive economy, individual consumers do not take account

of the externality imposed by their consumption, and make their saving and

consumption decisions taking as given the consumption of others. With

the formulation of utility that I have used here, the introduction of a con-

cern about consumption relative to the benchmark level of consumption is

isomorphic to a change in the rate of time preference, from the viewpoint

of an individual consumer. Thus, the introduction of concern about the

benchmark level of consumption does not dramatically alter the nature of

the equilibrium balanced growth path in a competitive economy. However,

the characterization of the socially optimal balanced growth path is funda-
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mentally affected by the introduction of a benchmark level of consumption

because a social planner internalizes the consumption externality. Taking

account of this externality, the socially optimal balanced growth path is char-

acterized by a condition on the intratemporal intergenerational allocation of

consumption in addition to the Modified Golden Rule condition, which spec-

ifies the optimal capital-labor ratio.

I derived a set of taxes and transfers that induces a competitive economy

to attain the socially optimal balanced growth path. This set of taxes con-

sists of a tax on capital income and a lump-sum intergenerational tax/transfer

system that resembles pay-as-you-go social security. The optimal set of

taxes has a couple of counter-intuitive features. First, though one might be

tempted to think that the capital income tax is used to achieve the optimal

capital-labor ratio, and the lump-sum intergenerational tax/transfer system

is used to attain the optimal intergenerational allocation of consumption,

this paper shows that the opposite is the case. If the benchmark level

of consumption does not enter the utility, then the Modified Golden Rule

capital-labor ratio can be attained by lump-sum intergenerational taxes and

transfers that lead to the appropriate level of aggregate saving; the optimal

capital income tax rate is zero in this case. However, when the benchmark
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level of consumption enters the utility function, the socially optimal balanced

growth path is also characterized by an optimal intergenerational consump-

tion ratio. This value of the intergenerational consumption ratio is attained

by the appropriate value of the capital income tax. Indeed, the optimal tax

rate on capital income in equation (34) is a function of the intergenerational

consumption ratio, but does not depend directly on the capital-labor ratio.

A second counter-intuitive feature of the optimal set of taxes concerns

the optimal capital income tax when the social planner is more patient than

the individuals. One might be tempted to think that in this case, the social

planner would want to foster capital accumulation at a higher rate than in

a laissez-faire competitive economy, and thus the optimal tax/transfer sys-

tem would include a subsidy to capital. However, with benchmarks that

are equally-weighted geometric averages of individual consumption (θy =

θo = 1), I derive the opposite result: the optimal capital income tax rate

is positive when the social planner is more patient than individuals. In

this case, the social planner wants to shift consumption toward future, i.e.,

younger, consumers. Thus, relative to laissez faire, in each period the so-

cial planner wants to shift consumption away from old consumers toward

young consumers, and a positive tax on capital income achieves this goal in
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a competitive economy.
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A Competitive Balanced Growth Path

This appendix characterizes the private rate of return, R, and the capital-

labor ratio, k, along a competitive balanced growth path. Use equation (19)

to substitute for xt+1 in equation (20), differentiate with respect to ct, and

set the derivative equal to zero to obtain

βM (σ)σαG
−η(1−α)
A

µ
xt+1
ct

¶−α
Rt+1 = 1. (A.1)

Use the facts that ct = Ct and xt+1 = Xt+1 in equilibrium and that along a

balanced growth path Rt+1 is constant and Xt+1 = σGACt to obtain

βM (σ)G
−α−η(1−α)
A R = 1, (A.2)

which implies equation (23). Also use these facts to rewrite the budget

constraint in equation (19) along a balanced growth path as

σGACt = (wt − T yt − Ct)R− T ot+1 + qt+1. (A.3)

Now use equation (17) to substitute for R, equation (15) updated by one

period to substitute for T ot+1, and equation (18) to substitute for qt+1, and

recall that kt+1 is constant along a balanced growth path to rewrite equation

(A.3) as

σGACt = (wt − T yt − Ct) f 0 (k) +GNT yt+1. (A.4)
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Equation (A.4) is linear in Ct and can be easily solved for Ct to obtain

Ct = φ

µ
wt − T yt +

GNT
y
t+1

f 0 (k)

¶
(A.5)

where

φ ≡
·
1 +

σGA
f 0 (k)

¸−1
. (A.6)

The aggregate capital stock at the beginning of period t + 1, Kt+1 =

At+1Nt+1kt+1, equals the aggregate saving of young consumers during period

t. Therefore,

At+1Nt+1kt+1 = Nt (wt − T yt − Ct) . (A.7)

Use equation (A.5) to substitute for Ct in equation (A.7) to obtain

At+1Nt+1kt+1 = Nt

µ
(1− φ) (wt − T yt )− φ

GNT
y
t+1

f 0 (k)

¶
. (A.8)

Use equation (2) for wt, equation (16) for T
y
t , divide both sides of equation

(A.8) by AtNt , and recall that kt is constant along a balanced growth path

to obtain

GAGNk = (1− φ)

µ
f (k)− kf 0 (k)− T

y
0

A0

¶
− φ

GNGAT
y
0

A0f 0 (k)
. (A.9)

Use the definition εf ≡ kf 0(k)
f(k)

and rearrange equation (A.9) to obtain

·
1− φ+ φ

GNGA
f 0 (k)

¸
T y0 =

·
(1− φ) (1− εf)− GAGN

f 0 (k)
εf

¸
A0f (k) . (A.10)

51



B Optimal Balanced Growth Path

This appendix derives the values of σ and k along the socially optimal bal-

anced growth path. First, rewrite the aggregate resource constraint in equa-

tion (4) in terms of Ct and σt (rather than in terms of Ct and Xt) as

f (kt) =

µ
1 +

σt
GN

¶
Ct
At
+GAGNkt+1. (B.1)

Using equation (26) for the utility of the representative consumer born at

the beginning of period t, the Lagrangian for the problem of the social plan-

ner maximizing the social welfare function in equation (24) subject to the

aggregate resource constraint in equation (B.1) is

L = Σ∞j=−1ρ
jGjN

 1
1−α

·³
C1−ηt+j σ

−ηεy
t+j

´1−α
+ β

¡
C1−ηt+j+1σ

1−η+ηεo
t+j+1

¢1−α¸
+λt+j

h
f (kt+j)−

³
1 +

σt+j
GN

´
Ct+j
At+j
−GNGAkt+j+1

i
 .
(B.2)

Differentiating L with respect to Ct+j, σt+j, and kt+j+1, and setting each

derivative equal to zero, yields

 ρGNσ
−ηεy(1−α)
t+j

+βσ
(1−η+ηεo)(1−α)
t+j

 (1− η)C
(1−η)(1−α)
t+j = ρGN

λt+jCt+j
At+j

µ
1 +

σt+j
GN

¶
(B.3)
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 −ρGNηεyσ−ηεy(1−α)t+j +

(1− η + ηεo)βσ
(1−η+ηεo)(1−α)
t+j

 1

σt+j
C
(1−η)(1−α)
t+j = ρλt+j

Ct+j
At+j

(B.4)

and

ρ
λt+j+1
λt+j

f 0 (kt+j+1) = GA. (B.5)

Now confine attention to balanced growth paths so that Ct+1
Ct

= Xt+1
Xt

=

GA, and σt = σ. Evaluate both sides of equation (B.3) along a balanced

growth path, multiply both sides by σ−(1−η+ηεo)(1−α) and use the definition

of M (σ) in equation (21) to obtain

(1− η)
£
ρGN [σM (σ)]−1 + β

¤
C
(1−η)(1−α)
t = ρGN

λtCt
At

µ
1 +

σ

GN

¶
σ(1−α)(−1+η−ηεo).

(B.6)

Equating the gross growth rates of both sides of equation (B.6), and setting

Ct+1
Ct

= GA along a balanced growth path, yields

G
(1−η)(1−α)
A =

λt+1
λt
. (B.7)

Substitute equation (B.7) into equation (B.5), and let k∗ denote the value of
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k along the optimal balanced growth path, to obtain

ρf 0 (k∗) = Gα+η(1−α)
A . (B.8)

Let σ∗ denote the value of σt along the optimal balanced growth path.

To determine σ∗, first evaluate equation (B.4) along a balanced growth path

and use the definition of M (σ) in equation (21) to obtain −ρGNηεy [σM (σ)]−1

+β (1− η + ηεo)

σ(1−η+ηεo)(1−α)
1

σ∗
C
(1−η)(1−α)
t = ρλt

Ct
At
. (B.9)

Now use equation (B.9) to substitute for ρλt
Ct
At
in equation (B.6) and rear-

range to obtain

·
(1− η + ηεy)

σ∗

GN
+ ηεy

¸
ρGN
β

[σ∗M (σ∗)]−1 = 1−η+ηεo+ηεo
σ∗

GN
. (B.10)

Using the definition of Ψ (r) in equation (28), equation (B.10) can be rewrit-

ten as

ρ

β
[M (σ∗)]−1 = Ψ

µ
σ∗

GN

¶
. (B.11)

Equation (B.11) implies equation (29) in the text.
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C Optimal Intergenerational Tax/Transfer

This appendix derives the optimal intergenerational transfer in equation (36).

First, rearrange equation (A.6) to obtain

1− φ =
σGA
f 0 (k)

φ. (C.1)

Substitute equation (C.1) into equation (A.10) to obtain

µ
1 +

GN
σ

¶
T y0 =

µ
1− εf
εf

− φ−1
GN
σ

¶
εfA0f (k) . (C.2)

Now substitute the expression for f 0 (k∗) from equation (27) into equation

(C.1) and rearrange to obtain an expression for φ−1 along the socially optimal

balanced growth path

φ−1 = 1 + σρG
(1−α)(1−η)
A . (C.3)

Finally, substitute equation (C.3) into equation (C.2) and multiply both sides

of the resulting equation by σ∗ to obtain

(σ∗ +GN)T
y
0 =

µ
σ∗
1− εf
εf

− σ∗ρGNG
(1−α)(1−η)
A −GN

¶
εfA0f (k

∗) . (C.4)

Using the definition τ y∗ ≡ T yo
A0f(k)

and the definition of Λ in equation (37),

equation (C.4) implies equation (36).
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D Proofs of Lemmas 1 and 2 and Proposition

1

Proof of Lemma 1: Define n ≡ ηεy
1−η ≥ 0 and m ≡ ηεo

1−η ≥ 0. Use

these definitions to rewrite Ψ (r) in equation (28) as Ψ (r) = 1+m+mr
(1+n)r+n

r. (a)

Inspection of the expression for Ψ (r) indicates that Ψ (r) > 0 since r >

0. (b) Ψ (r) = 1+m+mr
1+n+n

r
, so Ψ0 (r) = m

1+n+n
r
+ 1+m+mr

(1+n+n
r )

2
n
r2
, which, since

r > 0, is positive, if m > 0 or if n > 0. (c) Parts (a) and (b) imply

that εΨ ≡ rΨ0(r)
Ψ(r)

≥ 0. Ψ0 (r) = 1
r
Ψ (r) + m

1+m+mr
Ψ (r) − 1+n

(1+n)r+n
Ψ (r) =

1
r
Ψ (r)

h
1− 1+m+n

(1+m+mr)((1+n)r+n)
r
i
. Therefore, rΨ

0(r)
Ψ(r)

= 1− (1+m+n)r
(1+m+mr)((1+n)r+n)

<

1 since r > 0. (d) If ηεy = ηεo = 0, then m = n = 0, so Ψ (r) = 1
r
r = 1.

(e) Ψ
³
εy
εo

´
= Ψ

¡
n
m

¢
=

1+m+m n
m

(1+n) n
m
+n

n
m
= 1+m+n

(1+n+m)n
n = 1. (f) If ηεo = 0

and ηεy > 0, then m = 0 and n > 0. Therefore, Ψ (r) = r
r+(1+r)n

<

1. (g) If ηεy = 0 and ηεo > 0, then m > 0 and n = 0. Therefore,

Ψ (r) = 1 + m (1 + r) > 1. (h) limr→0 1rΨ (r) = limr→0 1+m+mr(1+n)r+n
= 1+m

n
=

1−η+ηεo
nεy

if ηεy > 0 and limr→0 1rΨ (r) = ∞ if ηεy = 0. (i) limr→∞ 1
r
Ψ (r) =

limr→∞ 1+m+mr
(1+n)r+n

= m
1+n

= ηεo
1−η+ηεy .

Proof of Lemma 2: The definition of εM in equation (22) implies that

εM + εΨ = − (1− εΨ) − (α− 1) (1− η (1− (εy + εo))). Part (c) of Lemma
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1 implies that − (1− εΨ) < 0. Since 1− η (1− (εy + εo)) > 0, εM + εΨ < 0

if α ≥ 1.

Proof of Proposition 1 Existence: Case I: α > 1. Use the defini-

tion of M (σ) in equation (21) to obtain M (σ)Ψ
³

σ
GN

´
= σεM+1 1

GN

Ψ(σ/GN )
σ/GN

.

Equation (22) implies that εM+1 = (1− α) (1− η (1− εy − εo)) < 0 for α >

1. Therefore, since (from Lemma 1, part (h)) limr→0 1rΨ (r) > 0, limσ→0 σεM+1 1
GN

Ψ(σ/GN )
σ/GN

=

∞. Since limr→∞ 1
r
Ψ (r) is finite (from Lemma 1, part (i)), limσ→∞ σεM+1 1

GN

Ψ(σ/GN )
σ/GN

=

0. SinceM (σ)Ψ
³

σ
GN

´
is continuous in σ for σ > 0, and since limσ→0M (σ)Ψ

³
σ
GN

´
=

∞ and limσ→∞M (σ)Ψ
³

σ
GN

´
= 0, there exists a σ > 0 for whichM (σ)Ψ

³
σ
GN

´
=

ρ
β
> 0.

Case II: α = 1 and 0 < ηεo
1−η+ηεy <

ρ
β
GN <

1−η+ηεo
ηεy

. If α = 1, then εM =

−1, which implies that M (σ)Ψ
³

σ
GN

´
= 1

GN

Ψ(σ/GN )
σ/GN

. Part (h) of Lemma

1 implies that limσ→0M (σ)Ψ
³

σ
GN

´
≥ 1

GN

1−η+ηεo
ηεy

and part (i) of Lemma

1 implies that limσ→∞M (σ)Ψ
³

σ
GN

´
= 1

GN

ηεo
1−η+ηεy . Since M (σ)Ψ

³
σ
GN

´
is continuous in σ, there exists a σ > 0 such that M (σ)Ψ

³
σ
GN

´
= ρ

β
for

1
GN

ηεo
1−η+ηεy <

ρ
β
< 1

GN

1−η+ηεo
ηεy

.

Uniqueness: Lemma 2 implies that M (σ)Ψ
³

σ
GN

´
is monotonically de-

creasing in σ in Cases I and II. Therefore, there is at most one value of σ

for which M (σ)Ψ
³

σ
GN

´
= ρ

β
.
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E Private and Social Marginal Rates of Sub-

stitution

The private intertemporal marginal rate of substitution isMRSP (ct, xt+1) ≡

β
∂uot+1/∂xt+1

∂uyt /∂ct
. Differentiate equation (13) with respect to ct and equation

(14) with respect to xt+1, and evaluate these derivatives using the definition

σt+1 ≡ Xt+1
Ct+1

and the fact that in equilibrium ct = Ct and xt+1 = Xt+1 to

obtain

MRSP (ct, xt+1) = β
C
(1−η)(1−α)−1
t+1 σ

−α−η(1−εo)(1−α)
t+1

C
(1−η)(1−α)−1
t σ

−ηεy(1−α)
t

. (E.1)

Now evaluateMRSPt+1 (ct, xt+1) along a balanced growth path using the facts

that σt+1 = σt and Ct+1 = GACt along a balanced growth path to obtain

MRSP (ct, xt+1) = βG
(1−η)(1−α)−1
A σ−α−(1−α)η(1−εo−εy). (E.2)

Use the definition of M (σ) in equation (21) to rewrite MRSP (ct, xt+1) as

MRSP (ct, xt+1) = βG
−α−η(1−α)
A M (σ) . (E.3)

The social intertemporal marginal rate of substitution is

MRSS (Ct,Xt+1) ≡
β
¡
∂uot+1/∂xt+1 + ∂uot+1/∂Xt+1

¢
+ ρGN∂u

y
t+1/∂Xt+1

∂uyt /∂ct + ∂uyt /∂Ct + (ρGN)
−1 β∂uot/∂Ct

.

(E.4)
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Use equations (13) and (14) to calculate the derivatives in equation (E.4),

and evaluate these derivatives using the definition σt+1 ≡ Xt+1
Ct+1

and the fact

that in equilibrium ct = Ct and xt+1 = Xt+1 to obtain

MRSS (Ct, Xt+1) =

β (1− η + ηεo)X
(1−η)(1−α)−1
t+1 σ

ηεo(1−α)
t+1

−ρGNηεyC(1−η)(1−α)−1t+1 σ
−ηεy(1−α)−1
t+1

(1− η + ηεy)C
(1−η)(1−α)−1
t σ

−ηεy(1−α)
t

− (ρGN)−1 βηεoX(1−η)(1−α)−1
t σ

ηεo(1−α)+1
t

. (E.5)

Now evaluateMRSS (Ct, Xt+1) along a balanced growth path using the facts

that σt+1 = σt and that Ct+1 = GACt along a balanced growth path to obtain

MRSS (Ct, Xt+1) = βG
(1−η)(1−α)−1
A σ(1−α)(1−η+ηεo+ηεy)−1

× 1− η + ηεo − β−1ρGNηεyσ−(1−α)(1−η+ηεo+ηεy)

1− η + ηεy − β (ρGN)
−1 ηεoσ(1−α)(1−η+ηεo+ηεy)

. (E.6)

Now use the expression for MRSP (ct, xt+1) in equation (E.2) and the defi-

nition of M (σ) in equation (21) to rewrite equation (E.6) as

MRSS (Ct,Xt+1) =MRS
P (ct, xt+1)

1− η + ηεo − ηεyρGNβ
−1 [σM (σ)]−1

1− η + ηεy − ηεo (ρGN)
−1 βσM (σ)

.

(E.7)

Define r∗ ≡ σ∗
GN
and use equation (B.11) to substitute Ψ(r∗)

r∗ for ρGNβ
−1 [σM (σ)]−1
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along a socially optimal balanced growth path in equation (E.7) to obtain

MRSS (Ct,Xt+1) =MRS
P (ct, xt+1)

1− η + ηεo − ηεy
Ψ(r∗)
r∗

1− η + ηεy − ηεo
r∗

Ψ(r∗)
. (E.8)

To simplify the expression on the right hand side of equation (E.8), use

the following lemma.

Lemma 5
1−η+ηεo−ηεy Ψ(r)r
1−η+ηεy−ηεo r

Ψ(r)
= Ψ (r).

Proof. Define n ≡ ηεy
1−η ≥ 0 and m ≡ ηεo

1−η ≥ 0 and observe that

1−η+ηεo−ηεy Ψ(r)r
1−η+ηεy−ηεo r

Ψ(r)
=

1+m−nΨ(r)
r

1+n−m r
Ψ(r)

=
1+m−nΨ(r)

r

(1+n)
Ψ(r)
r
−m

Ψ(r)
r
=

1+m−n 1+m+mr
(1+n)r+n

(1+n) 1+m+mr
(1+n)r+n

−m
Ψ(r)
r
= (1+m)(1+n)r−nmr

(1+n)(1+m)−nm
Ψ(r)
r

= Ψ (r).

Finally, use Lemma 5 to rewrite equation (E.8) as

MRSS (Ct, Xt+1) =MRS
P (ct, xt+1)×Ψ

µ
σ∗

GN

¶
. (E.9)
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Socially Optimal Balanced Growth Path

εf =
1
3
, α = 4, β = (0.98)30 , ρ = (0.99)30

GA = (1.018)
30 , GN = (1.007)

30

θy = θo = 0 θy = θo = 0.5 θy = θo = 1

εy = 0 εy = 0.289 εy = 0.448

εo = 0 εo = 0.381 εo = 0.552

f 0 (k∗) = 11.499 σ∗ 0.927 0.927 0.927

η = 0 τ ∗K, τ
∗
K,net 0, 0 0, 0 0, 0

f 0ann = 1.0848 τ y∗ 0.070 0.070 0.070

f 0 (k∗) = 7.698 σ∗ 0.911 0.921 0.922

η = 0.25 τ ∗K, τ
∗
K,net 0, 0 0.002, 0.001 0.020, 0.010

f 0ann = 1.0704 τ y∗ 0.053 0.055 0.056

f 0 (k∗) = 5.153 σ∗ 0.885 0.915 0.917

η = 0.5 τ ∗K, τ
∗
K,net 0, 0 0.008, 0.005 0.043, 0.027

f 0ann = 1.0562 τ y∗ 0.028 0.035 0.035

Table 1: Socially Optimal Balanced Growth Path

64



Sensitivity Analysis

Baseline: parameter values in Table 1 with η = 0.5 and θy = θo = 1.

f 0ann σ∗ τ ∗K τ ∗K,net τ y∗

Baseline 1.0562 0.917 0.043 0.027 0.035

εf = 0.30 1.0562 0.917 0.043 0.027 0.074

εf = 0.36 1.0562 0.917 0.043 0.027 0.004

ρ = 1.00 1.0456 0.841 0.084 0.067 -0.002

ρ = (0.98)30 1.0669 1.000 0.000 0.000 0.070

β = (0.99)30 1.0562 1.000 0.000 0.000 0.054

β = (0.97)30 1.0562 0.839 0.084 0.055 0.017

N (years per period) = 25 1.0562 0.930 0.036 0.027 0.036

N (years per period) = 35 1.0562 0.903 0.050 0.027 0.032

GA = (1.01)
30 1.0355 0.917 0.043 0.042 0.010

GA = (1.026)
30 1.0770 0.917 0.043 0.020 0.052

GN = 1 1.0562 0.917 0.043 0.027 0.092

GN = (1.01)
30 1.0562 0.917 0.043 0.027 0.011

α = 2 1.0375 0.816 0.098 0.094 -0.028

α = 6 1.0752 0.946 0.027 0.013 0.066

Table 2: SensitivityAnalysis
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