CLINICAL OUTCOME OF TRANSFEMORAL DIRECT SOCKET INTERFACE (PART 2)

Authors

DOI:

https://doi.org/10.33137/cpoj.v4i1.36065

Keywords:

Health, Prosthesis, Socket, Comfort, Interface, Outcome Measure, Satisfaction, Direct Casting, Amputation, Transfemoral Amputation

Abstract

BACKGROUND: Amputation at the transfemoral (TF) level reduces the rate of successful prosthetic fitting, functional outcome, and quality of life (QoL) compared with transtibial amputation. The TF socket interface is considered the most critical part of the prosthesis, but socket discomfort is still the most common user complaint.  Direct Socket for transfemoral prosthesis users is a novel interface fabrication process where the socket is shaped and laminated directly on the residual limb and delivered in a single visit.

OBJECTIVE(S): The aim of this study was to investigate if prosthetic users' quality of life (QoL), comfort, and mobility with a Direct Socket TF interface were comparable to their experience with their previous prostheses.

METHODOLOGY: The pre/post design prospective cohort study included 47 subjects. From this cohort, 36 subjects completed the 6-months follow-up (mean age 58 years, 27 males). Outcomes at baseline included EQ-5D-5L®, PLUS-M™, CLASS, ABC, AMPPRO, and TUG. At 6-weeks and 6-months, subjects repeated all measures. Seven Certified Prosthetist (CP) investigators performed observations and data collection at six different sites (from July 2018 to April 2020). 

FINDINGS: Results showed significant improvement in all outcome measures for the 36 subjects that completed both 6-weeks and 6-months follow-ups. CLASS sub-scales showed significantly improved stability, suspension, comfort, and socket appearance. Improvement in K-Level and less use of assistive devices were observed with the AMPPRO instrument, indicating improved user mobility and performance. QoL was also increased, as measured in Quality-Adjusted-Life-Years (QALY) from the EQ-5D-5L.

CONCLUSION: Evidence from the findings demonstrate that the Direct Socket TF system and procedure can be a good alternative to the traditional method of prosthetic interface delivery.

Layman's Abstract

After lower limb amputation, the goal for most people is to regain mobility and independence and return to normal daily activities. Typically, people with transfemoral amputation are less likely to receive a prosthesis or fully use a prosthesis as compared to people with transtibial amputation. Moreover, their quality of life is also lower. The Direct Socket TF method is a new way of fabricating a prosthetic socket for users with above-knee amputation, enabling fabrication directly onto the residual limb and delivery of the socket in a single visit. In this study, we wanted to understand how the effect of Direct Socket TF on prosthetic 'user's quality of life, health, mobility level, and balance would compare to their previous prosthesis. This new Direct Socket TF procedure was implemented in six different prosthetic clinics across the United States and used by 36 prosthetic users for six months. Our first article on this study describes increased user satisfaction with their new interface and the single visit service model. This second article on the same clinical investigation documents the significant improvement in outcomes compared to their original interface in terms of quality of life, confidence, mobility, comfort, stability, and activity level.

Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/36065/27923

Direct Socket TF – Summary (YouTube): https://www.youtube.com/watch?v=-fvVFqjgxjo

How To Cite: Walker J, Marable W.R, Smith C, Sigurjónsson B.Þ, Atlason I.F, Johannesson G.A. Clinical outcome of transfemoral direct socket interface (part 2). Canadian Prosthetics & Orthotics Journal. 2021;Volume 4, Issue 1, No.6. https://doi.org/10.33137/cpoj.v4i1.36065

Corresponding Author: Anton Johannesson, PhD
TeamOlmed, Kistagången 12, 164 40 Kista, Stockholm, Sweden.
E-mail:  ajohannesson@teamolmed.se
ORCID: https://orcid.org/0000-0001-8729-458X

Downloads

Download data is not yet available.

References

Mathis SL. Factors associated with mobility apprehension in persons with lower limb amputation. Prosthet Orthot Int. 2020;44(4):208–214. DOI:10.1177/0309364620915017

Kamrad I, Söderberg B, Örneholm H, Hagberg K. SwedeAmp—the Swedish amputation and prosthetics registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome. Acta Orthop. 2020;91(4):464–70. DOI:10.1080/17453674.2020.1756101

Paterno L, Ibrahimi M, Gruppioni E, Menciassi A, Ricotti L. Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans Biomed Eng. 2018;65(9):1996–2010. DOI:10.1109/TBME.2017.2775100

Madsen U, Hommel A, Berthelsen C, Bååth C. Systematic review describing the effect of early mobilisation after dysvascular major lower limb amputations. J. Clin. Nurs. 2017;26(21–22). DOI:10.1111/jocn.13716

Kahle JT, Highsmith MJ, Schaepper H, Johannesson A, Orendurff MS, Kaufman K. Predicting walking ability following lower limb amputation: an updated systematic literature review. Technol Innov. 2016;18(2):125–37. DOI:10.21300/18.2-3.2016.125

Sauter CN, Pezzin LE, Dillingham TR. Functional outcomes of persons who underwent dysvascular lower extremity amputations. Am J Phys Med Rehabil. 2013; 92(4):287–96. DOI:10.1097/PHM. 0b013e31827d620d

Hagberg K, Brånemark R. Consequences of non-vascular trans-femoral amputation. Prosthetics Orthot Int. 2001;25(3):186–94. DOI:10.1080/03093640108726601

Össur. Direct Socket Material Kit [Internet]. [cited 2021 May 30] Available from: https://www.ossur.com/en-us/prosthetics/sockets/direct-socket-material-kit

Eneroth M, Apelqvist J, Troëng T, Persson BM. Operations, total hospital stay and costs of critical leg ischemia: a population-based longitudinal outcome study of 321 patients. Acta Orthop Scand. 1996;67(5):459–65. DOI:10.3109/17453679608996668

Söderberg B, Hagberg K, Mattsson L, Larsson J, Örneholm H, Roubert A, et.al. Swedeamp: Swedish lower limb amputations register. 2018 Report [Internet]. 2019. [cited 2021 May 30]. Available from: https://swedeamp.com/wp-content/uploads/2019/09/Arsrapport-2018-FINAL_190409.pdf

SPARG. A Survey of the Lower Limb Amputee Population in Scotland, 2008 [Internet]. [cited 2021 May 30]. Available from: http://www.knowledge.scot.nhs.uk/media/CLT/ResourceUploads/4093845/ed2d2db3-ca6a-442d-a324-10dcc431707d.pdf

Safari R. Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction. Prosthet Orthot Int. 2020;44(6):384–401. DOI:10.1177/0309364620969226

Karam J, Shepard A, Rubinfeld I. Predictors of operative mortality following major lower extremity amputations using the national surgical quality improvement program public use data. J Vasc Surg. 2013;58(5):1276–82. DOI:10.1016/j.jvs.2013.05.026

Turner S, McGregor AH. Perceived effect of socket fit on major lower limb prosthetic rehabilitation: a clinician and amputee perspective. Arch Rehabil Res Clin Transl. 2020;2(3):100059. DOI:10.1016/j.arrct.2020.100059

Rouhani N, Esfandiari E, Babaee T, Khosravi M, Moradi V, Balouchkayvan B, et al. The comprehensive lower limb amputee socket survey: reliability and validity of the persian version. Prosthet Orthot Int. 2020. DOI:10.1177/0309364620958526

Muller MD. Atlas of amputations and limb deficiencies: surgical, prosthetic, and rehabilitation principles. 4th ed. Krajbich JI, Pinzur MS, Potter B, Stevens PM, editors. American Academy of Orthopaedic Surgeons; 2016. Chapter 43.

Kahle J, Miro RM, Ho LT, Porter M, Lura DJ, Carey SL, et al. The effect of the transfemoral prosthetic socket interface designs on skeletal motion and socket comfort: A randomized clinical trial. Prosthet Orthot Int. 2020. DOI:10.1177/0309364620913459

Fatone S, Caldwell R. Northwestern university flexible subischial vacuum socket for persons with transfemoral amputation-part 1. Prosthetics Orthot Int. 2017;41(3):237–45. DOI:10.1177/0309364616685229

Kahle JT, Klenow TD, Sampson WJ, Highsmith MJ. The effect of transfemoral interface design on gait speed and risk of falls. Technol Innov. 2017;18(813):167–73. DOI:10.21300/18.2-3.2016.167

Fatone S, Caldwell R. Northwestern university flexible subischial vacuum socket for persons with transfemoral amputation. Prosthetics Orthot Int. 2017;41(3):246–50. DOI:10.1177/ 0309364616685230

Miller T, Paul R, Forthofer M, Wurdeman SR, Affairs S, Clinic H, et al. Impact of time to receipt of prosthesis on total healthcare costs 12 months post-amputation taavy. Am J Phys Med Rehabil. 2020;99(11):1026–31. DOI:10.1097/PHM.0000000000001473

Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of amputees (MAAT I): quality of life and satisfaction are strongly related to mobility for patients with a lower limb prosthesis. Prosthet Orthot Int. 2018;42(5):498–503. DOI:10.1177/0309364617736089

Össur-Academy. Direct Socket System by Össur HF, 2020. [cited 2021 May 30]. Available from: https://www.youtube.com/watch?v=okLjzJKQG3M&t=4s

Raya MA, Gailey RS, Fiebert IM, Roach KE. Impairment variables predicting activity limitation in individuals with lower limb amputation. Prosthet Orthot Int. 2010;34(1):73–84. DOI:10.3109/ 03093640903585008

Össur HF. Direct Socket TF [Internet]. 2020-10-12. 2020. [cited 2020 Aug 25]. Available from: https://www.ossur.com/en-us/prosthetics/sockets/direct-socket-tf

Össur-Academy. Direct Socket TF- Summary [Internet]. 2021. [cited 2020 Aug 25]. Available from: https://www.youtube.com/watch?v=-fvVFqjgxjo

Marable WR, Smith C, Sigurjónsson BÞ, Atlason IF, Johannesson GA. Transfemoral socket fabrication method using direct casting: outcomes regarding patient satisfaction with device and services. Can Prosthet Orthot J. 2020;3(2). DOI:10.33137/cpoj.v3i2.34672

Bosmans J, Suurmeijer T, Hulsink M, van der Schans C, Geertzen J, Dijkstra P. Amputation, phantom pain and subjective well-being: a qualitative study. Int J Rehabil Res. 2007;30(1):1–8. DOI:10.1097/MRR.0b013e328012c953

Hagberg K, Häggström E, Uden M, Brånemark R. Socket versus bone-anchored trans-femoral prostheses: Hip range of motion and sitting comfort. Prosthet Orthot Int. 2005;29(2):153–63. DOI:10.1080/03093640500238014

Meulenbelt H, Geertzen J, Jonkman M, Dijkstra P. Skin problems of the stump in lower limb amputees: 1. a clinical study. Acta Derm Venereol. 2011;91(2):173–7. DOI:10.2340/00015555-1040

Gaunaurd I, Spaulding S, Amtmann D, Salem R, Gailey R, Morgan S, et al. Use of and confidence administering outcome measures among clinical prosthetists: results from a national survey and mixed-methods training program. Prosthet Orthot Int. 2015;39(4):314–21. DOI:10.1177/0309364614532865

Klenow, TD Pousett, B Wening, J Cabana, A Anderson, C Kaluf B. Outcome measures toolkit summary: lower limb prosthetics. American Academy of Orthotists and Prosthetists (AAOP). 2020 [cited 2020 Aug 25]. Available from: https://www.oandp.org/page/LLP_OM_Toolkit_Summary

AAOP 2020. Outcome Measures in Patient Care. J Prosthetics Orthot. 2020;32(2):20–4. DOI: 10.1097/01.JPO.0000656440. 28478.ba

Sions J, Beisheim E, Manal T, Smith S, Horne J, Sarlo F. Differences in physical performance measures among patients with unilateral lower-limb amputations classified as functional level k3 versus k4. Arch Phys Med Rehabil. 2018;99(7). DOI:10.1016/j.apmr.2017.12.033

Balk EM, Gazula A, Markozannes G, Kimmel HJ, Saldanha IJ, Resnik LJ, et al. Lower limb prostheses: measurement instruments, comparison of component effects by subgroups, and long-term outcomes. Comparative Effectiveness Review. Agency for Healthcare Research and Quality; 2018;EHC017-EF. Available from:https://www.ncbi.nlm.nih.gov/books/NBK531517/table/ch2.tab1

Dillon M, Major M, Fatone S, Kaluf B, Balasanov Y. Predict the medicare functional classification level (k-level) using the amputee mobility predictor in people with unilateral transfemoral and transtibial amputation: a pilot study. Prosthet Orthot Int. 2018;42(2):191 –197. DOI:10.1177/0309364617706748

Hafner BJ, Gaunaurd IA, Morgan SJ, Amtmann D, Salem R, Gailey RS. Construct validity of the prosthetic limb users survey of mobility (plus-m) in adults with lower limb amputation. Arch Phys Med Rehabil. 2017;98(2):277–285. DOI:10.1016/j.apmr.2016.07.026

Gailey R, Kristal A, Lucarevic J, Harris S, Applegate B, Gaunaurd I. The development and internal consistency of the comprehensive lower limb amputee socket survey in active lower limb amputees. Prosthet Orthot Int. 2019;43(1):80–87. DOI:10.1177/0309364618791620

Miller WC, Speechley M, Deathe AB. Balance confidence among people with lower-limb amputations. Phys Ther. 2002;82(9):856–65. DOI:10.1093/ptj/82.9.856

Schoppen T, Boonstra A, Groothoff JW, De Vries J, Göeken LNH, Eisma WH. The timed up and go test: Reliability and validity in persons with unilateral lower limb amputation. Arch Phys Med Rehabil.1999;80(7):825–828.DOI:10.1016/S0003-9993(99)90234-4

Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil. 2002;83(5):613–627. DOI:10.1053/apmr.2002.32309

Össur HF. The prosthetic rehabilitation outcomes application (PRO App) [Internet]. 2019. [cited 2020 Aug 25]. Available from: https://www.opsoutcomes.com/ops-proapp-privacy-notice

EuroQol Group. EQ-5D [Internet]. 2020. [cited 2020 Aug 25]. Available from: https://euroqol.org/eq-5d-instruments/

Craig BM, Rand K. Choice defines QALYs: a US valuation of the EQ-5D-5L. Value Health. 2018;21:S12. DOI:10.1016/j.jval.2018.04.057

University of Washington Center on Outcomes Research in Rehabilitation. Prosthetic Limb Users Survey of Mobility (PLUS-MTM) 12-item Short Form [Internet]. Version 1.2 – English (US). 2020. [cited 2020 May 30]. Available from: http://plus-m.org/

Parry SW, Steen N, Galloway SR, Kenny RA, Bond J. Falls and confidence related quality of life outcome measures in an older British cohort. Postgrad Med J. 2001;77(904):103–8. DOI:10.1136/pmj.77.904.103

Heinemann AW, Bode RK, O’Reilly C. Development and measurement properties of the orthotics and prosthetics users’ survey (OPUS). Prosthetics Orthot Int. 2003;27(3):191–206. DOI:10.1080/03093640308726682

Jarl G, Heinemann AW, Lindner HY, Norling Hermansson LM. cross-cultural validity and differential item functioning of the orthotics and prosthetics users’ survey with Swedish and united states users of lower-limb prosthesis. Arch Phys Med Rehabil. 2015;96(9):1615–26. DOI:10.1016/j.apmr.2015.03.003

Cole MJ, Cumming J, Golland N, Hayes S, Ostler C, Scopes J, et al. BACPAR tollbox of outcome measures Version 2. British association of chartered physiotherapists in amputee rehabilitation. 2014. [cited 2020 May 30]. Available from: https://bacpar.csp.org.uk/system/files/toolbox_version_2.pdf

GPower [Internet]. 3.1.9.2. [cited 2020 May 30]. Available from: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html

Johannesson A, Larsson G-U, Ramstrand N, Turkiewicz A, Wiréhn A-B, Atroshi I. Incidence of lower-limb amputation in the diabetic and nondiabetic general population: A 10-year population-based cohort study of initial unilateral and contralateral amputations and reamputations. Diabetes Care. 2009;32(2). DOI:10.2337/dc08-1639

Pohjolainen T, Alaranta H, Kärkäinen M. Prosthetic use and functional and social outcome following major lower limb amputation. Prosthet Orthot Int. 1990;14(2):75–9. DOI:10.3109/ 03093649009080326

Bates K, Bolker B, Walker S, Christiensen RH, Singmann H, Dai B, et al. Ime4 [Internet]. Package ´lme4´. 2020. [cited 2020 May 30]. Available from: https://github.com/lme4/lme4/

Cutti AG, Lettieri E, Del Maestro M, Radaelli G, Luchetti M, Verni G, et al. Stratified cost-utility analysis of C-Leg versus mechanical knees: Findings from an Italian sample of transfemoral amputees. Prosthet Orthot Int. 2017;41(3):227–36. DOI:10.1177/ 0309364616637955

Brodtkorb TH, Henriksson M, Johannesen-Munk K, Thidell F. Cost-Effectiveness of C-Leg Compared With Non-Microprocessor-Controlled Knees: A Modeling Approach. Arch Phys Med Rehabil. 2008;89(1):24–30. DOI:10.1016/j.apmr.2007.07.049

Kahle JT, Klenow TD, Sampson WJ, Highsmith MJ. The Effect of Transfemoral Interface Design On Gait Speed and Risk of Falls. Technol Innov. 2016;18(2):167–73. DOI:10.21300/18.2-3.2016.167

Hanspal R, Fisher K, Nieveen R. Prosthetic socket fit comfort score. Diability Rehabil. 2003;25(22):1278–80. DOI: 10.1080/ 09638280310001603983

Gaunaurd I, Kristal A, Horn A, Krueger C, Muro O, Rosenberg A, et al. The utility of the 2-minute walk test as a measure of mobility in people with lower limb amputation. Arch Phys Med Rehabil. 2020;101(7):1183–1189. DOI:10.1016/j.apmr.2020.03.007

Published

2021-06-08