biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 63:38-42, 2019 | DOI: 10.32615/bp.2019.005

Apyrases in Arabidopsis thaliana

R. Meng1, L.Q. Zhu1,2, Y.F. Yang1, L.C. Zhu1, Z.K. Hou1, L. Jin1,*, B.C. Wang1,*
1 Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, P.R. China
2 College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P.R. China

Apyrases belong to the ATPase family of enzymes that hydrolyze phosphoanhydride bonds of nucleoside tri- and di-phosphates. These enzymes differ markedly from other phosphohydrolases due to their high specific activity, broad divalent cation requirement, broad nucleotide substrate specificity, and insensitivity to various inhibitors. In the past 30 years, apyrases have been frequently studied in mammals. In comparison, research of apyrases in plants has received little attention, despite the growth of plants being closely related to the apyrases. In this review, we summarize the research of the apyrases in Arabidopsis thaliana and point to the possible future directions of research. Apyrases have seven members found in Arabidopsis thaliana, each with different properties and functions. Currently, the characterization and functions of AtAPY1 and AtAPY2 have been reported, though, to the best of our knowledge, the other apyrase members (AtAPY3 to 7) have not yet been sufficiently described. In this review, we also summarize the progress being made and the difficulties encountered in apyrase research in Arabidopsis thaliana.

Keywords: ATPase family, AtAPY1 and AtAPY2, enzyme localizations and biochemical properties
Subjects: Apyrases

Accepted: November 13, 2018; Prepublished online: November 14, 2018; Published online: January 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Meng, R., Zhu, L.Q., Yang, Y.F., Zhu, L.C., Hou, Z.K., Jin, L., & Wang, B.C. (2019). Apyrases in Arabidopsis thaliana. Biologia plantarum63, Article 38-42. https://doi.org/10.32615/bp.2019.005
Download citation

References

  1. Abeijon, C., Yanagisawa, K., Mandon, E.C., Häusler, A., Moremen, K., Hirschberg, C.B., Robbins, P.W.: Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. - J. cell. Biol. 122: 307-323, 1993. Go to original source...
  2. Chen, Y., Yordanov, Y.S., Ma, C., Strauss, S., Busov, V.B.: DR5 as a reporter system to study auxin response in Populus. - Plant Cell Rep. 32: 453-463, 2013. Go to original source...
  3. Chiu, T.Y., Christiansen, K., Moreno, I., Lao, J., Loqué, D., Orellana, A., Heazlewood, J.L., Clark, G., Roux, S.J.: AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. - Plant Cell Physiol. 53: 1913-1925, 2012. Go to original source...
  4. Chiu, T.Y., Lao, J., Manalansan, B., Loqué, D., Roux, S.J., Heazlewood, J.L.: Biochemical characterization of Arabidopsis APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis. - Biochem. J. 472: 43-54, 2015. Go to original source...
  5. Clark, G., Roux, S.J.: Apyrases, extracellular ATP and the regulation of growth. - Curr. Opin. Plant Biol. 14: 700-706, 2011a. Go to original source...
  6. Clark, G., Roux, S.J.: Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. - Plant Physiol. 156: 1740-1753, 2011b. Go to original source...
  7. Clark, G., Wu, M., Wat, N., Onyirimba, J., Pham, T., Herz, N., Ogoti, J., Gomez, D., Canales, A.A., Aranda, G.: Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. - Plant mol. Biol. 74: 423-435, 2010. Go to original source...
  8. Clark, G.B., Morgan, R.O., Fernandez, M.P., Salmi, M.L., Roux, S.J.: Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. - Plant Sci. 225: 107-116, 2014. Go to original source...
  9. Cohn, J.R., Uhm, T., Ramu, S., Nam, Y.W., Kim, D.J., Penmetsa, R.V., Wood, T.C., Denny, R.L., Young, N.D., Cook, D.R.: Differential regulation of a family of apyrase genes from Medicago truncatula. - Plant Physiol. 125: 2104-2119, 2001. Go to original source...
  10. Day, R.B., Mcalvin, C.B., Loh, J.T., Denny, R.L., Wood, T.C., Young, N.D., Stacey, G.: Differential expression of two soybean apyrases, one of which is an early nodulin. - Mol. Plant. Microbe Interact. 13: 1053-1070, 2000. Go to original source...
  11. Di, V.F.: ATP as a death factor. - BioFactors 8: 301-303, 1998. Go to original source...
  12. Etzler, M.E., Kalsi, G., Ewing, N.N., Roberts, N.J., Day, R.B., Murphy, J.B.: A Nod factor binding lection with apyrase activity from legume roots. - Proc. nat. Acad. Sci. USA. 96: 5856-5861, 1999. Go to original source...
  13. Ghosh, R., Sen, P.C., Biswas, S.: Mimosa pudica apyrase requires polysaccharide and Ca2+ for the activity. - Mol. cell. Biochem. 187: 47-55, 1998. Go to original source...
  14. Govindarajulu, M., Kim, S.Y., Libault, M., Berg, R.H., Tanaka, K., Stacey, G., Taylor, C.G.: GS52 ecto-apyrase plays a critical role during soybean nodulation. - Plant Physiol. 149: 994-1004, 2009. Go to original source...
  15. Handa, M., Guidotti, G.: Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). - Biochem. biophys. Res. Commun. 218: 916-923, 1996. Go to original source...
  16. Hsieh, H.L., Tong, C.G., Thomas, C., Roux, S.J.: Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea. - Plant mol. Biol. 30: 135-147, 1996. Go to original source...
  17. Ishikawa, H., Tamiya, T., Tsuchiya, T., Matsumoto, J.J.: A novel ATP-ADPpase from Mimosa pulvinus. - Comp. Biochem. Physiol. B: Biochem. mol. Biol. 78: 59-61, 1984. Go to original source...
  18. Jeter, C.R., Tang, W., Henaff, E., Butterfield, T., Roux, S.J.: Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. - Plant Cell 16: 2652-2664, 2004. Go to original source...
  19. Kavaiool, U.N., Ezhova, T.A.: The analysis of auxin distribution in the wild type and abruptus mutant plants of Arabidopsis thaliana (L.) Heynh. by using the chimeric gene DR5::GUS. - Moscow Univ. Biol. Sci. Bull. 65: 104-106, 2010. Go to original source...
  20. Kettlun, A.M., Espinosa, V., García, L., Valenzuela, M.A.: Potato tuber isoapyrases: substrate specificity, affinity labeling, and proteolytic susceptibility. - Phytochemistry 66: 975-982, 2005. Go to original source...
  21. Kettlun, A.M., Uribe, L., Calvo, V., Silva, S., Rivera, J., Mancilla, M., Antonieta, M., Valenzuela, Traverso-Cori, A.: Properties of two apyrases from Solanum tuberosum. - Phytochemistry 21: 551-558, 1982. Go to original source...
  22. Kim, S.Y., Sivaguru, M., Stacey, G.: Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. - Plant Physiol. 142: 984-992, 2006. Go to original source...
  23. Knowles, A.F.: The GDA1_CD39 superfamily: NTPDases with diverse functions. - Purinergic Signalling 7: 21-45, 2011. Go to original source...
  24. Komoszyński, M., Wojtczak, A.: Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. - Biochim. biophys. Acta 1310: 233-241, 1996. Go to original source...
  25. Komoszyński, M.A.: Comparative studies on animal and plant apyrases (ATP diphosphohydrolase EC 3.6.1.5) with application of immunological techniques and various ATPase inhibitors. - Comp. Biochem. Physiol. B: Biochem. mol. Biol. 113: 581-591, 1996. Go to original source...
  26. Mcalvin, C.B., Stacey, G.: Transgenic expression of the soybean apyrase in Lotus japonicus enhances nodulation. - Plant Physiol. 137: 1456-1462, 2005. Go to original source...
  27. Min, H.L., Wu, J., Yao, J., Gallardo, I.F., Dugger, J.W., Webb, L.J., Huang, J., Salmi, M.L., Song, J., Clark, G.: Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. - Plant Physiol. 164: 2054-2067, 2014. Go to original source...
  28. Moustafa, M.F.M.: Apyrase, streptavidin-binding proteins, and antimicrobial activity in Pisum sativum. - Russ. J. Plant Physiol. 61: 496-502, 2014. Go to original source...
  29. Parsons, H.T., Christiansen, K., Knierim, B., Carroll, A., Ito, J., Batth, T.S., Smith-Moritz, A.M., Morrison, S., McInerney, P., Hadi, M.Z.: Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. - Plant Physiol. 159: 12-26, 2012. Go to original source...
  30. Plesner, L.: Ecto-ATPases: identities and functions. - Int. Rev. Cytol. 158: 141-214, 1995. Go to original source...
  31. Riewe, D., Grosman, L., Fernie, A.R., Wucke, C., Geigenberger, P.: The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. - Plant Physiol. 147: 1092-1109, 2008. Go to original source...
  32. Schiller, M., Massalski, C., Kurth, T., Steinebrunner, I.: The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. - BMC Plant Biol. 12: 123-139, 2012. Go to original source...
  33. Shibata, K., Abe, S., Yoneda, M., Davies, E.: The sub-cellular distribution and isotypes of a 49-kDa apyrase from pea (Pisum sativum L. var. Alaska). - Plant Physiol. Biochem. 40: 407-415, 2002. Go to original source...
  34. Shibata, K., Morita, Y., Abe, S., Stanković, B., Davies, E.: Apyrase from pea stems: isolation, purification, characterization and identification of a NTPase from the cytoskeleton fraction of pea stem tissue. - Plant Physiol. Biochem. 37: 881-888, 1999. Go to original source...
  35. Song, C.J., Roux, S.J.: Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. - Plant Physiol. 140: 1222-1322, 2006. Go to original source...
  36. Steinebrunner, I., Jeter, C., Song, C., Roux, S.J.: Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. - Plant Physiol. Biochem. 38: 913-922, 2000. Go to original source...
  37. Steinebrunner, I., Wu, J., Sun, Y., Corbett, A., Roux, S.J.: Disruption of apyrases inhibits pollen germination in Arabidopsis. - Plant Physiol. 131: 1638-1647, 2003. Go to original source...
  38. Sunhee, K., Yang, S.H., Taejong, K., Han, J.S., Joowon, S.: Hypertonic stress increased extracellular ATP levels and the expression of stress-responsive genes in Arabidopsis thaliana seedlings. - Biosci. Biotech. Biochem. 73: 1252-1256, 2009. Go to original source...
  39. Tang, W., Sun, Y., Muday, G.K., Roux, S.J.: Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. - Plant Physiol. 131: 147-154, 2003. Go to original source...
  40. Thomas, C., Rajagopal, A., Windsor, B., Dudler, R., Lloyd, A., Roux, S.J.: A role for ectophosphatase in xenobiotic resistance. - Plant Cell 12: 519-533, 2000. Go to original source...
  41. Thomas, C., Sun, Y., Naus, K., Lloyd, A., Roux, S.: Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. - Plant Physiol. 119: 543-552, 1999. Go to original source...
  42. Veloria, J.R., Devkota, A.K., Cho, E.J., Dalby, K.N.: Optimization of a Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., Provart, N.J.: An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. - PLoS One 2: e718, 2007. Go to original source...
  43. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., Provart, N.J.: An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. - PLoS One 2: e718, 2007. Go to original source...
  44. Wolf, C., Hennig, M., Romanovicz, D., Steinebrunner, I.: Developmental defects and seedling lethality in apyrase AtAPY1 and AtAPY2 double knockout mutants. - Plant mol. Biol. 64: 657-672, 2007. Go to original source...
  45. Wu, J., Steinebrunner, I., Sun, Y., Butterfield, T., Torres, J., Arnold, D., Gonzalez, A., Jacob, F., Reichler, S., Roux, S.J.: apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. - Plant Physiol. 144: 961-975, 2007. Go to original source...
  46. Wujak, M., Banach, M., Porowińska, D., Piskulak, K., Komoszyński, M.: Isolation and bioinformatic analysis of seven genes encoding potato apyrase. Bacterial overexpresssion, refolding and initial kinetic studies on some recombinant potato apyrases. - Phytochemistry 93: 8-17, 2013. Go to original source...
  47. Wujak, M., Komoszyński, M.: [Functions of plant apyrases]. - Postepy Biochem. 57: 92-100, 2011. [In Polish]
  48. Yang, J., Wu, J., Romanovicz, D., Clark, G., Roux, S.: Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. - Plant Physiol. Biochem. 69: 62-73, 2013. Go to original source...
  49. Yang, X., Wang, B., Farris, B., Clark, G., Roux, S.J.: Modulation of root skewing in Arabidopsis by apyrases and extracellular ATP. - Plant Cell Physiol. 56: 2197-2206, 2015. Go to original source...
  50. Yuo, T., Toyota, M., Ichii, M., Taketa, S.: Molecular cloning of a root hairless gene rth1 in rice. - Breed. Sci. 59: 13-20, 2009. Go to original source...