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ABSTRACT: Deep Brain Stimulation (DBS) is a stan-
dard clinical tool for treating refractory stages of Parkin-
son’s Disease (PD). While current chronic DBS systems
apply constant stimulation patterns, improved clinical
effects are expected from adaptive DBS (aDBS) sys-
tems, which stimulate only when required, and for
which single-trial methods developed in the field of
BCI may prove fruitful. The development of aDBS
systems requires (among others) two key ingredients:
neural markers informative about the state of the pa-
tient’s motor system, and algorithmic control strategies
which translate the observed markers into stimulation
patterns. While both start to be investigated in human
patients, animal models of PD may drive aDBS research
forward at substantially higher speed and lower risks. In
this regard, we present a prototype setup of a closed-
loop aDBS system. It enables online recording, signal
analysis and stimulation for a rodent model of PD.
Our preliminary analyses show that the system – in
accordance to the literature – is able to evoke spectral
power changes of cortical and subcortical LFPs, and
thus provides the experimental basis to systematically
investigate informative markers and control strategies.

INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nu-
cleus (STN) has become a standard therapy for treat-
ing refractory stages of Parkinson’s disease (PD) [1].
Clinical applications of DBS usually rely on open-
loop technology, which means that the stimulation is
uninterruptedly delivered, disregarding the motor state
of the patient or his/her related brain activity signatures,
also called neural markers (NM). This type of DBS is
termed continuous DBS (cDBS). Despite proven clinical
benefits, cDBS systems are energetically inefficient,
leading to a reduced battery life, and are also known
to cause side effects like tolerance to treatment [2], [3],
[4] which may be related to the continuous stimulation.
In recent years, first closed-loop adaptive DBS (aDBS)
systems have been presented in research environments
[5], [6], [3]. They pursue the goal to provide stimulation
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on-demand only, for example, by reducing or stopping
stimulation during periods of inactivity or when the
motor performance of the patient does not require it. The
envisioned effect of aDBS is an improvement of the PD
symptoms which is at least comparable to that of a cDBS
approach, while simultaneously minimizing the energy
input to the brain. Determining when and how to deliver
stimulation in closed-loop aDBS systems could directly
be based upon the observed motor ability of the patient.
For practical reasons, however, current approaches try
to replace the behavioral measurements by NMs which
describe the current motor state of the patient. Such
NMs can be extracted from local field potentials (LFPs)
recorded via electrodes which habe been implanted
in the STN for delivery of the DBS pulses [7], [8].
Although the identification of PD-relevant NMs has been
studied in recent years, the high intersubject variability
of the signal features makes the characterization of such
NMs a difficult task [9], [10], [11]. In addition, the
development of closed-loop control algorithms poses
a great challenge as (a) non-stationarities govern the
dynamics of measured brain activity, (b) artifacts of
biological and non-biological origin are contained in
the data, (c) the amount of labeled data per patient to
learn from is limited. Further studies on investigating the
mechanisms of the DBS [12] and on the optimization
of stimulation parameters [13], are additional examples
of the efforts done in this regard. Along these lines,
several studies on closed loop DBS in both compu-
tational and experimental neuroscience — such as by
[14], [15] and [16] — have been published, where the
development of systems that can record, analyze and
stimulate in an online closed-loop scenario seemed key
to scientific progress. The development of such systems
can be addressed using an experimental setup based
on animal models, as introduced in [17], [18], [19].
The 6-hydroxydopamine (6-OHDA) PD rat model is
an example of a neurotoxic model. It makes use of 6-
OHDA injected into the substantia nigra pars compacta
(SNC), medial forebrain bundle (MFB), or the caudate-
putamen complex CPu [20] to generate Parkisonian-
like biomarkers and behavior. In the present work,
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we introduce our initial work on a novel closed-loop
DBS stimulation system that allows recording, analysis
and stimulation of cortical and subcortical structures in
hemi-Parkinsonian rats, which has not been reported so
far in the literature. We also present preliminary results
on the spectral effects evoked by DBS when applied to
the STN of 6-OHDA PD rats.

METHODS

Animal Preparation

Stereotactic surgery was carried out for high precision
lesioning and electrode implantation. All protocols were
approved by the Animal Care Committee of the Uni-
versity of Freiburg (permit G-15/31). Female Sprague-
Dawley rats (300-320g) received inhalation anaesthesia
with isoflorane. A freshly prepared 6-hydroxydopamine
according to [21], kept in the dark and on ice, was
injected unilaterally into the ventrolateral CPu. The flow
rate of the injection was 0.5 µl/min and the injection was
carried out for 10 min using a micropefusion pump.
Four weeks after the operation, a rotational test was
carried out on each rat. Each animal was habituated to
the test environment for around 30 minutes. Then, the
animal was taken out, subcutaneously administrated with
apomorphine to evaluate the success of the lesioning
operation with drug-induced rotation, as explained in
[21]. The animals were placed back in the experiment
environment and the rotation was measured for 40
minutes. The animals showing drug-induced rotation
(PD rats from now on) were chosen for the electrode
implantation surgery.
The week after, electrodes implantation surgery was
carried out on 6 PD rats. Two electrodes were implanted
in two different regions of the brain. One tetrode in
the subthalamic nucleus (STN) with four contacts (two
stimulation and two recording), made from 50µm micro
wires (Science Products GmbH, Germany) and a bitrode
with two recording contacts in the motor cortex with
the same micro wires. Two anchors were placed on the
rat’s skull as reference and ground contacts, respectively.
After a week of recovery the closed loop experiment was
executed.

Signal Acquisition

The stimulation device used in this study was designed
and built in the Neuroelectronic System group (NES
STiM) of the University Medical Center Freiburg, Ger-
many [22],[23]. An Alphalab SnR (Alphaomega Co.,
Israel) recording device was utilized to capture the LFPs
of the rat’s brain during the experiment. The schematic
of the closed loop setup is depicted in Fig. 1. The signals
were recorded at 1395 Hz sampling frequency. For the
offline analysis, a frequency filter with a pass band of
0.7-90 Hz was applied before signals were downsampled
to 250 Hz.

model processing

acquisition

stimulation

monitoring

Figure 1. Schematic of the closed loop utilized in
this study. The signal of local field potentials (LFPs)
is captured using an Alphalab SnR device and streamed
out for visualization and into Matlab. Analysis of the
acquired signals, as well as the stimulation control was
performed online.

Experimental Design

The timeline of one experimental session is depicted
in Figure 2. Each rat was recorded for 10 mins after
being placed in the experimental environment (pre-
stimulation phase), followed by a stimulation phase of
10 min duration. Prior to the subcutaneous injection of
apomorphine and directly after it, the LFP baseline
activity was recorded for 10 s each. During the following
10 minutes, closed loop DBS stimulation was carried
out (stimulation phase). In this stage, the stimulation
onset was triggered when the power of the beta band
(13-25 Hz) activity averaged across channels surpassed a
threshold defined as the median of the power recorded in
the post-injection baseline interval. Once the stimulation
was triggered, it was delivered with constant intensity for
one minute. For later offline analysis of the simulation
effect, two time intervals of LFP signals of 10 s duration
each were extracted from the stimulation-free periods
directly before and after the stimulation. After a washout
period of 60 s, the threshold criterion became active
again and the next stimulation block could be delivered.
Within the 10 min stimulation phase, an average of 4.6
stimulation blocks were delivered per animal.

10 min

apomorphine

10s 10s

60s
60s

stim. block stim. block

10s 10s

Figure 2. Schematic of the recording sessions with
a depiction of the segments analyzed: baseline prior
to apomorphine delivery , baseline following apomor-
phine delivery , pre-stimulation , post-stimulation .
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Segments analyzed: Recorded signals were analyzed
under two different setups.

1) To determine the effects of DBS in the spectra
of the motor cortex and the STN, signals before
and after each stimulation interval were analyzed.
The 10 s of data before and after DBS stimulation
were segmented using 2 s rectangular windows with
90% overlap. Pre-stimulation and post-stimulation
spectra were compared using the Wilcoxon rank-
sum test to determine the statistical significance
of observed differences. For reference, the spectra
of two baseline recordings were also computed,
i.e., 10 s segments immediately before and after
apomorphine delivery, but prior to any DBS stim-
ulation. Refer to Figure 2 for an schematic repre-
sentation.

2) To analyze potential washout effects of the apo-
morphine, as well as cumulative effects caused by
repeated delivery of DBS periods over 10 minutes,
the 10 s segments of data collected before each
DBS stimulation (windowed as described above)
were correlated with the timestamp (time since
apomorphine delivery) of each window using the
Spearman’s rank correlation.

In all scenarios, PSD of the signals was computed using
a multitaper estimate with a multitaper windowing band-
width of 4 Hz. The frequency components around 30 Hz
were disregarded in the analysis due to a hardware-
related artifact in that frequency band.

RESULTS

Effects of DBS onto the spectrum

Figure 3 depicts spectra of all animals, four recording
locations and the four conditions: baseline prior (yellow)
and after (green) apomorphine, and the average of the
spectra prior (blue) and after (red) each DBS stimulation
block, according to the setup shown in Figure 2. It is
observed, that the administration of apomorphine causes
an increment in the signal power particularly in the low
frequency range. This phenomenon can be observed in
all the channels for subjects 2, 3, 4 and 6. DBS effects
are assessed by comparing pre and post segments of
each simulation block (blue vs. red). Various, subject-
specific effects were observed: For subject 1 synchro-
nization of activity in the 5-10 Hz range was observed
(mainly visible in channels m1, m2, and stn1). Subject 2
shows a contrary effect upon stimulation, where power
in the low frequency range decreases, as observed in
m2 and stn2. An even stronger power decrement can
be observed in the beta band (around 15 Hz) of this
subject, particularly evident in channels m2, stn1, and
stn2. Subject 3 shows a much more smooth spectrum,
with no specific frequency peaks standing out from
the background in either conditions, except for a low
frequency desynchronization present in stn2 and a beta
band synchronization detected in stn1. Subject 4 shows a
behavior similar to subject 1, presenting power decrease
in the lower part of the frequency spectrum for m2,

stn1, and stn2. Subject 5 shows the smallest spectral
changes caused by DBS stimulation, with a subtle power
decrement of the alpha-range component in channel m2.
Similarly to subject 3, power spectra of subject 6 do not
show any evident frequency components standing out
from the background, with the effects of the stimulation
decreasing the signal energy of the entire analyzed
spectrum.

Effects of time in PSD

Spearman’s rank correlation between the energy of each
of the frequency bins and the corresponding times-
tamp are provided in Figure 4. Subject 1 shows rather
heterogeneous changes in the spectra of m1 and m2,
however both stn1 and stn2 show a clear desynchro-
nization (marked in blue) in the lower frequency range.
Subject 3 shows a consistent power decrement in the
lower part of the spectrum for m1 and m2, and a
generalized increment of the power (marked in red) in
stn2. Subjects 4 and 5 show a generalized decrease in
the signal energy along time. It is worth pointing out
that for subject 4, alpha band was stable for m1, m2
and stn1, whereas beta was stable only for m1 and m2.
On the other hand, the time-related desychronization for
subject 5 is present in the whole spectrum, although a
stronger desynchronization in stn1 beta band can also
be observed. Finally, subject 3 reveals a weak power
decrement in the lower part of the spectrum for m2,
having stn1 the contrary effect. Channel stn2 presents
a power decrement, which is homogeneous across the
spectrum.

DISCUSSION

In this contribution, we presented (1) a closed loop
aDBS system allowing acquisition, analysis and stimu-
lation of subcortical and cortical structures of PD animal
models and (2) preliminary results on the individual
effects observed upon DBS on spectral characteristics
of LFP signals.

i Our system provides a suitable platform for acqui-
sition of subcortical and cortical signals in an on-
line scenario. Although, the real-time requirements
of the system have not been defined, its modular
construction allows for a flexible setup, that is easy
to customize. As future work, the exact temporal
characteristics of the system will be assessed.

ii DBS-evoked cortical and subcortical desynchroniza-
tion and synchronization effects in alpha and beta
bands have been observed. As the effects varied be-
tween animals, relevant NMs should be determined
individually for each subject. This finding underlines
the potential benefit of data-driven approaches for
driving aDBS methods forward.

iii We have shown that the experimental setup divided
in pre-, during, and post-stimulation phases is ap-
propriate to carry out the intended analysis.

iv Temporal structure of the spectral features confirms
the existence of non-stationary dynamics. While in
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Figure 3. Top: spectra of recorded channels displaying DBS- and apomorphine-evoked changes: baseline prior to
apomorphine , and baseline following apomorphine , pre-stimulation block , post-stimulation block . Bottom:
Graded scores of the ranksum test are provided in green to brown colors. They compare pre- vs. post-stimulation

spectra. In both figures, gray areas mark the spectral band affected by a technical artifact.

our setup, it could not be determined, if this non-
stationarity is caused by repeated DBS or by the
washout of the apomorphin, the results strongly
indicate, that non-stationarities must be considered
in analyses and aDBS systems.
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