
66

Data Migration for Large Scientific
Datasets in Clouds

Akos Hajnal1, Eniko Nagy1, Peter Kacsuk1 and Istvan Marton1

1Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA
SZTAKI), Budapest, Hungary, akos.hajnal@sztaki.mta.hu, eniko.nagy@sztaki.mta.hu,
peter.kacsuk@sztaki.mta.hu*Correspondence:

Peter Kacsuk, nstitute
for Computer Science

and Control, Hungarian
Academy of Sciences

(MTA SZTAKI), Budapest,
Hungary, peter.kacsuk@

sztaki.mta.hu

Abstract
Transferring large data files between various storages including
cloud storages is an important task both for academic and
commercial users. This should be done in an efficient and
secure way. The paper describes Data Avenue that fulfills all
these conditions. Data Avenue can efficiently transfer large
files even in the range of TerraBytes among storages having
very different access protocols (Amazon S3, OpenStack
Swift, SFTP, SRM, iRODS, etc.). It can be used in personal,
organizational and public deployment with all the security
mechanisms required for these usage configurations. Data
Avenue can be used by a GUI as well as by a REST API. The
papers describes in detail all these features and usage modes
of Data Avenue and also provides performance measurement
results proving the efficiency of the tool that can be accessed
and used via several public web pages.

Keywords: data management, data transfer, data migration,
cloud storage

1. Introduction
In the last 20 years collecting and processing large scientific data sets have

been gaining ever increasing importance. This activity requires first of all large
storage systems, where the large scientific data can be stored. In the 00’s many
storage systems with different kind of access protocols (GridFTP [1], iRODS1,
SRM [2], LCG File Catalogs [3], etc.) were introduced for this purpose. This
heterogeneity caused a lot of problem for scientists if they wanted to access data
stored in different kind of storage systems.

They had to learn the different protocols (APIs) and develop the data processing
software according to these APIs. Usually, data processing softwares were
developed for one particular API, that caused problem if the software had to access
data stored in another kind of storage.

The other problem was transferring large scientific data sets among different

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 1, 2018, pp. 66-86
https://doi.org/10.32010/26166127.2018.1.1.66.86

67

type of data storages. For example, scientists sometimes form new research
consortium, that requires using a new storage that is easier to access by all
consortium member. In the 00’s, grid systems were very popular among scientists
to share data and computing capacity. However, with the appearance of cloud
systems it became obvious that clouds offer many advantages that make the use of
grid systems obsolete. Therefore, scientists had to migrate both applications and
data from grids to clouds. This migration also requires a tool that enables fast and
efficient transfer of data among grid and cloud storages.

As clouds became more and more popular, scientific researchers and commercial
companies store more and more data in cloud-based storages. Meanwhile, this
approach has a lot of advantages, and there are several drawbacks too. One of the
biggest drawback becomes clear when the owner of the data decides to move the
data to another cloud or some kind of other storage. Cloud providers are typically
reluctant to develop tools by which data from their cloud could be migrated to
an external storage. However, sometimes a company decides to migrate the data
to another cloud providers cloud due to economic or security reasons. Scientists
can also find sometimes useful to migrate data for example, from a commercial
cloud to an academic cloud to reduce cost, or vice versa, to transfer data from the
academic cloud to a commercial cloud to get larger storage capacity.

All these problems mentioned above can be solved by a tool that is on one side
prepared to efficiently execute large data transfer and can access many different
storage types and on the other side provides a uniform API. Such a tool is Data
Avenue that was developed by MTA SZTAKI. In this paper we describe in detail
how the problems mentioned above can be solved by Data Avenue, and we also
show the performance of transferring large data sets by Data Avenue.

The outline of the paper is the following. After the Introduction Section 2
describes the main features of Data Avenue including the possible usage modes
and their security aspects. Section 3 overviews the GUI of Data Avenue designed
for humans and Section 4 introduces the REST API to be used by software systems
like scientific workflows. In Section 5 we show a concrete use case offered for the
users of MTA Cloud (the cloud system of the Hungarian Academy of Sciences).
Section 6 shows the results of performance measurements in order to prove the
efficiency of data transfer by Data Avenue. In Section 7 we compare Data Avenue
with similar tools and finally in the Conclusions we summarize the main messages
of this paper.

2. Data Avenue
Data Avenue was originally motivated to allow grid applications to access diverse

storage resources from different distributed computing infrastructures (DCIs) without
the need of installing additional software, or using proprietary, storage-specific data
transfer tools in application codes respectively [4], Previously, distributed applications,
which were willing to read/store greater amount of data, must had been adapted at
code-level to the particular storage provided in that particular DCI (e.g. access to the
specific GridFTP site was part of application code using specific libraries deployed
in all the worker nodes of the DCI). Therefore, jobs of these applications could not

Azerbaijan Journal of High Performance Computing, 1(1), 2018

68

be executed in other infrastructures, possibly providing different type of local storage
(e.g., iRODS). Porting/migrating of these applications were very time-consuming, error
prone, and tedious task, moreover, installation of a storage-specific software (such
as AWS CLI for Amazon S32-compliant storages) was administratively prohibited on
worker nodes in most of these clusters for security reasons.

Data Avenue offered a solution for these problems by providing a uniform
interface (HTTP-based, REST and SOAP API) for the clients to access a wide range
of storage types, where all data were mediated between the client and the storage
by Data Avenue, but without needing the clients to be aware of how to communicate
with a specific storage resource. Then, jobs could communicate with a Data Avenue
host only, using simple HTTP tools (such as curl and wget commands, which were
available at every worker node), which then guaranteed to forward/fetch data to/
from the actual storage resource, using the appropriate storage protocol. This
kind of data bridging service made possible that jobs could now be submitted
to different DCIs and still had access to the same or new storages through Data
Avenue to read, write, or exchange data respectively. Data Avenue was also used
in WS-PGRADE/gUSE [5] workflow system to generalize data access to any type of
remote storage resources supported by Data Avenue.

Data Avenue on the client side is connected over HTTP with clients, and on
the storage side is connected with different types of storage resources using the
appropriate storage-specific protocols (SFTP, SRM, iRODS, S3). Data Avenue
was built using a plugin architecture, where plugins, so called ’’adaptors”, allow
Data Avenue to connect to specific types of storages (e.g. S3 adaptor is used to
connect to any S3-compliant storage). Higher-level Data Avenue services do not
merely allow of connecting a client to a single storage resource but also enable
transferring data between the same or different types of storage resources (e.g.,
from S3 to SFTP or vice versa) by connecting different adaptors’ input and output
streams. Data transfer is an asynchronous process that runs in the Data Avenue
host, without the need of involving client’s machine at all. This data transfer service
can be used to move even a huge amount of data, by issuing a single command to
Data Avenue and then just polling transfer status until it is completed. Since Data
Avenue only streams data from input and output channels opened to the different
storages, the amount of data to be forwarded is not limited by the (disk or memory)
capacity of the Data Avenue host.

Data Avenue was recently further developed to be able to connect to more
and more cloud storages (Amazon S3 and OpenStack Swift3 are tested, Google
Cloud Storage and Microsoft Azure are under testing). In this way, Data Avenue
has become a potential tool not only to migrate data from legacy grid storages to
recent cloud storages (e.g. GridFTP to Swift), but also to migrate data between
cloud storages. Data Avenue is planned to be extended by services to synchronize
data between different storages (transfer incrementally), and perform scheduled
transfers (e.g. to allow nightly backups).

2.1. Data Avenue Deployment Types
Data Avenue was developed in a modular fashion that allows of different setups

Akos Hajnal, et al.

69

and configurations depending on the number of users, expected data transfer
load, performance, availability, scalability, cost, or other aspects. The simplest
configuration is composed of a single Data Avenue server instance and a database
that provides persistence; in the most complicated case, we use replicated HTTPS
proxies, replicated Data Avenue servers, and replicated database servers (detailed
below).

The Data Avenue server is a web application that can be run in a web application
container (such as Tomcat) and as database MySQL server can be used (accessed
via JDBC driver by Data Avenue server). When the Data Avenue server is accessed
remotely, it is required to have an HTTPS proxy installed (such as HAProxy or
Nginx) in front of Data Avenue server to encrypt sensitive data (e.g. passwords
or other sensitive data contents) exchanged between the client and the Data
Avenue server. Note that HTTP proxies serve too goals: perform load balancing
and terminate HTTPS connection. Load balancing is done by selecting one of the
backends in a round-robin way to which the inbound network traffic is forwarded to.
There are options to use other selection methods (e.g. based on some load or other
metric-based criteria), but due to their overhead (gathering metrics, choosing)
they might perform worse than simple round-robin. HTTPS termination means that
the proxy encrypts the data exchanged between the client and proxy to protect
against eavesdropping, while the connection between the proxy and the backend
is unencrypted, which resides within a safe, private network.

When using Data Avenue services from program codes or shell scripts REST
and SOAP APIs are available directly on the Data Avenue server through the
HTTPS proxy. The graphical user interface (GUI) of Data Avenue was developed
using pure JavaScript (using Angular framework and Bootstrap JS libraries), which
makes the GUI usable from within any browser regardless of the browser is running
on a PC or a mobile device. The GUI running in the browser uses REST calls to the
Data Avenue server to perform operations. Every instance of Data Avenue service
can provide the GUI. Depending on whether behind the HTTPS proxy there are
replicated Data Avenue servers or not. the GUI communicates with a single or
multiple Data Avenue servers, respectively, in a load-balanced fashion.

We differentiate three fundamental configurations depending on usage
scenarios:

1.	 Personal desktop PC or server host deployment
2.	 Company/organization-level deployment
3.	 Public/scalable service deployment
In die personal configuration, we assume a single user wishing to access remote

storage resources (manage, upload/download data from/to local disk) from his/
her local desktop PC. The data traffic to convey is relatively little and no massive
number of concurrent transfers is expected. There is no need to authenticate the
user, keep track of transfers for later accounting; all resources (PC or a remote
host) is under his/her authority, free or charged individually after resource usage.
For this usage scenario. Data Avenue can be installed on the local PC using the
dockerized version of Data Avenue (a single docker-compose command starts up
a Data Avenue and a database container). No additional configuration is needed.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

70

Right after that the user can open Data Avenue GUI from browser at URL http://
localhost:8080/dataavenue (see Figure 1/a).

Note that in this case no encryption is needed between the browser and the Data
Avenue server, as these data stays within the same machine (loopback), whereas
the connection between the Data Avenue server and the remote storage resources
are still encrypted by the storage access protocols themselves (e.g. HTTPS at S3).
The user can transfer data between any storages, including local disk (upload/
download) but transfers will be interrupted when the local PC is turned off.

If the user wishes to transfer larger amount of data which might take several
hours or days, he/she has the potential to deploy Data Avenue on a remote server
host (which is constantly up) locally or using a virtual machine (VM) in a private/
public cloud, as shown in Fig. 1 .b. The same docker-compose command can be
used, but in this case, an HTTPS proxy container is also launched, which connects
to the Data Avenue server internally, and Data Avenue GUI is served at address
https://server-host/dataavenue/. The user now can start longer running transfers,
which keep running on the server host even if the user closes the browser or turns
off his/her PC.

The drawback of the previous configurations is that when transferring a greater
amount of data or performing sever al transfers simultaneously the hardware of
a single host might not be able to serve the load and the performance of these
transfers might degrade (when CPU or network capacity are reached). For this
reason, when not only a single user but a group of people (e.g. member s of some
organization) are going to use data transfer (see Fig. 2), Data Avenue can be
deployed as a service at university/company-level. To pr epar e for concurrent load
both HTTP proxies and Data Avenue servers are replicated on a fixed number of
hosts (components deployed individually), calculated based on the expected load/
usage. which might be adjusted later manually (new hosts are added or superfluous
hosts removed). The university/- company might obtain an official certificate for the
domain name (in Domain Name Service (DNS) under which all HTTP proxies are
registered). This configuration is shown in Fig. 2. In this multi-user environment,
Data Avenue is able to keep track user activities (transfer histories) by using Data
Avenue’s access key system. Data Avenue access keys are like passwords and
usernames combined: for each user a unique identifier is given and all Data Avenue
services can be used by showing a valid access key, which is verified at each
request. (Note that Data Avenue access key just gives permission to talk to Data

Figure 1: Personal DA

Akos Hajnal, et al.

71

Avenue, which differs from credentials required by Data Avenue to connect to a
remote storage, e.g. S3 access key and secret key.) By connecting data transfers
and user access keys in the database, each user’s transfer history (what copied
to where, date, number of bytes transferred, etc.) can be looked back or used for
accounting, respectively. Organizations central authentication system (e.g. LDAP)
can be connected to Data Avenue access keys.

In the last setup, the number of users (public service) and/or the level of load
varies largely in time. To setup several hosts to prepare for peak loads might waste
resources in idle times, to use little hosts causes degraded data transfer throughput.
To find the trade-off between cost and performance a possible solution is to use
a dynamically changing infrastructure, which grows or shrinks automatically
depending on the current load. This configuration is illustrated in Fig. 3. MiCADO
[6] is a potential tool to build and control such an infrastructure, but other tools
might also work equally. Metrics to control scaling in and out events include CPU
load, heap memory usage, and network traffic.

2.2.	 Data Avenue Security
Confidentiality and integrity of the data transferred are important aspects in

using any tool like Data Avenue.
As described previously, whenever’ the Data Avenue server’ is accessed

remotely, HTTPS connection is established between clients and the Data Avenue
server, which guarantees that all data (including Data Avenue commands and
credentials) are secured using SSL/TLS. Data Avenue access keys ensure to allow
access to Data Avenue services only for’ authenticated users. Storage credentials
serve for’ authenticating to remote storage r esources. We note that Data Avenue
does not stor e credentials for the remote resources neither on disk nor in
database; they are kept in memory only for the time required (to open connection

Figure 2: Multi-user DA

Azerbaijan Journal of High Performance Computing, 1(1), 2018

72

Figure 3: Scalable DA

and authenticate to the remote storage).
The encryption of the communication between the Data Avenue server and the

different storage resources is ensured by the related, storage-specific protocol. For
example, protocols used to access S3, Swift, GridFTP, SFTP, SRM servers ensure
confidentiality of data sent to or received from the storage. When using ’’third-
party” transfers (e.g., S3 server-side copying within the same- or between different
regions, or between GridFTP servers, respectively) the data are not routed through
the Data Avenue server, thus use of Data Avenue has no effect on security. We note
that Data Avenue does not store any data either in part on disk; data transfers are
done using memory buffers only for the time of transfer.

Integrity of the sent data is guaranteed in the case of such storages where
the storage-related protocol itself supports integrity checking. For example, when
sending data to S3 storages, Data Avenue calculates MD5 hash of the sent data on
client side (sender), which finally verified against server-side (receiver) calculated
hash. If they do not match, the transfer is considered to be failed. Data Avenue
also offers failover mechanisms to recover from temporary failures (e.g., short
time network outage). It is done by automatically re-trying data transfers for a
(configurable) specified number of times, in a specified re-try delay time, re-trying
to transfer the data again up to at most a predefined number bytes. The latter
solution guarantees that failed data transfer cost can be escalate.

3. GUI
The aim of the new Data Avenue Graphical User Interface was to serve the

needs of users and make Data Avenue more easy to use. By having a GUI, there is
no need to use long REST-API commands during data transfer.

Akos Hajnal, et al.

73

In order to use Data Avenue service, the GUI needs to have an accessible Data
Avenue service endpoint to be configured before use. Fig. 4 shows the Settings menu,
where end-users can configure there their own Data Avenue service (web application
name only, if the host serving the GUI also corresponds to a Data Avenue service) and
the access key that allows to use Data Avenue services.

In order to access a target storage, end-users should configure their credentials. Fig.
5 shows the needed credentials in the case of an S3 storage (access key, secret key).

Fig. 6 shows the appearance of the DA GUI. It was designed to have a clear, well-
transparent design. The main page is separated into two main panels: the two storage’s
browser. End-users can browse within the source (left window), and the target (right
window) storage’s file system using DA service. As it can be seen, the buckets/directories
and the files within them are appear in a list on the screen. All of the main operations
are available while using the GUI: browse within the storage, up- load/download/delete/
copy/rename files/directories/buckets within the target storage.

Fig. 7 shows the list of the launched transfers at the Transfers tab. End-users can
check the progress bar and the status of each transfer. The source and the target URIs,

Figure 4: DA GUI settings

Figure 5: DA GUI S3 authentication

Azerbaijan Journal of High Performance Computing, 1(1), 2018

74

Figure 6: The overlook of the Data Avenue Graphical User Interface

and the size of the file which was moved are also included in the table.
The Uploads tab can be seen in Fig. 8. The progress bar, which shows the actual

progress of the upload operation, and the status are also integrated into the spreadsheet
here as well.

4. REST API
All Data Avenue services are available programmatically as well through its REST

(Representational State Transfer) API from program codes and shell scripts.
The REST API is available at URL https://dataavenue-host/dataavenue/rest/,where

”dataavenue-host” is the domain name (or IP address) of the host where Data Avenue
has been deployed. Table 1 summarizes REST ”resources” (directory, file, attributes,
transfer) and the valid HTTP methods (GET/POST/PUT/DELETE) applicable to them,
along with the functionality they correspond to.

According to the table, for example, to create a directory we need to send a POST
HTTP request to URL https://dataavenue-host/dataavenue/rest/directory; to delete a file
we send DELETE HTTP request to URL https://dataavenue-host/dataavenue/rest/file,
respectively.

Data Avenue refers to remote files residing on remote storages using URIs (Uniform
Resource Identifiers). URIs are of the form: protocol://storage-address/path/file; directory-
type URIs end with / symbol. The remote file or directory on which an operation is to be

Figure 7: DA GUI transfer

Akos Hajnal, et al.

75

Figure 8: DA GUI upload

Resources GET POST PUT DELETE

directory
list directory

entries
create

directory _
delete directory

(recursively)

file
download file

contents
upload file

(new)
upload file
(overwrite)

delete
file

attributes
get file or directo-

ry attributes _
modify

attributes
get attributes of
multiple items

transfer transfer status new transfer - abort transfer

performed is specified by the ”x-uri” header field. For example, ”x-uri: s3://aws.amazon.
com/mytestbucket/myfile.dat” refers to an object myfile.dat in bucket mytestbucket on
Amazon S3. Note that Data Avenue presents uniformly different storages to the users
regardless of that directories on the target storage are actually buckets (S3), containers
(Swift), or sub-directories (SFTP). Currently, protocol string can be one of: http://, https://,
sftp://, swift://, s3://, gsiftp://, srm://, irods://, or lfn://.

To access Data Avenue REST API each HTTP call is required to pass a valid access
key (also known as ”ticket” or password) as HTTP header field. For example, in header
”x-key: 123e4567-e89b-12d3-a456-426655440000” the value 123e... corresponds to the
access key issued to the user.

Credentials that are required by Data Avenue to authenticate to the remote storage
determined by x-uri are passed using the ”x-credentials” header field with a value
containing a JSON string. For example, ”x-credentials: f Type: UserPass, UserID:
accesskey, UserPass: secretkey g” uses ”UserPass”-type authentication for the storage
specified by x-uri, with username: ”accesskey” and password: ”secretkey”. Note
that different storage types may require different authentication types and fields, so
authentication fields may vary correspondingly.

To start a data transfer the x-uri header specified the source file or directory and
x-credentials contains credentials for source storage. The target storage (and path) and
target credentials are specified in the HTTP request body in JSON format. For example,
request body: f target:s3://aws.amazon.com/mytargetbucket/, overwrite: true, credentials:

Azerbaijan Journal of High Performance Computing, 1(1), 2018

76

f Type: UserPass, UserID: targetaccesskey, UserPass: targetsecretkey gg” specifies
”targetbucket” as the destination folder, and ”targetaccesskey” and ”targetsecretkey”
as access key and secret key for authentication. As a result, the transfer-start request
(POST) returns a ”transfer identifier”. Sending GET to resource transfer with ”path
parameter” (postfix added to resource name in the URL) corresponding to this identifier
returns the actual transfer status in JSON format. The response contains details such as
transfer status (done, running, failed), bytes transferred, date started, etc.

5. Using Data Avenue to move large data sets from different clouds
One of our main targeted user groups is the Hungarian academic research community

and their cloud, called MTA Cloud [7]. The MTA Cloud was founded in 2014, when the
Wigner Data Center and the Institute for Computer Science and Control (MTA SZTAKI)
collaborated to establish a community Cloud for the member institutes of the Hungarian
Academy of Sciences. MTA Cloud has currently 56 projects from 17 research institutes
including among others the Institute for Nuclear Research, the Research Centre for
Astronomy and Earth Sciences and other academic and research institutes in other joint
projects e.g. University of Szeged and Eszterhazy Karoly University of Applied Sciences.
OpenStack and Docker container based cloud infrastructure combines resources from
Wigner and MTA SZTAKI relying on the nationwide academic Internet backbone [8]
which has 10 Gigabit network and other federated services, e.g. eduGain and HEXXA
for authentication and authorisation. The overall capacity is 1304 virtualized CPU with
4,7 TB memory and 574,75 TB storage facility. Moreover, the expansion in 2017 enabled
the use of GPU cards, which can be utilized for parallel and computational scientific
applications.

Utilizing (among others) the elasticity, security solutions and easy access offered
by cloud computing, changes the way how scientists store the data for their research
or the result of their research work. The reproduction of the results of the research is an
important aspect of publishing. Therefore, long-term storage of data is a key value, thus,
cloud storage usage continuously emerging in the last few years. It is a fact, that cloud
providers do not support users taking their data to another cloud storage, they do not
provide tools for this purpose. Although, researchers can have difficulties, when they
have to move their data to a slower, but at the same time a cheaper private or academic
cloud, in case of changed financial circumstances, in order to continue their research.

Data Avenue can be utilized in many ways. We have selected from this set, the
deployment of a personal Data Avenue service in an academic cloud, since data
movement from public clouds is a relevant issue here.

Fig. 9 shows the overall architecture of this use case. In the first scenario, a Data
Avenue service and an S3 storage is established within the MTA academic cloud. With
the help of Data Avenue service, all of the important files can be transfered from a public
cloud, such as Amazon cloud, to the local S3 storage which is running in MTA Cloud. In
the second scenario, Data Avenue service can be utilized by transferring data from the
local S3 storage to the virtual machine which processes data.

End-users can establish a Data Avenue service in the cloud either using Docker [9] or
automatically with an orchestration tool. Optionally, end-users can use the Data Avenue
service which is running in SZTAKI, and operate with the GUI of the Data Avenue [10],

Akos Hajnal, et al.

77

instead of establishing their own Data Avenue service. Data Avenue can move data
across clouds, with different type of API access, if they are publicly available.

The use of Data Avenue service is available for MTA Cloud users. Although, MTA
Cloud has no S3 storage available, therefore, users should make an S3 storage for their
own, using volumes, which can be attached to a running virtual machine. There is an
opportunity to request volumes in clouds, which can be attached to a running virtual
machine. End-users can use attached volumes in many different ways, we recommend
the Ceph [11] storage solution in order to have a full value private S3 storage within our
project. Ceph is an open-source storage system, designed to provide highly scalable
object-, block- and file-based storage under a unified storage cluster. It uses CRUSH
(Controlled Replication Under Scalable Hashing) algorithm to ensure data distribution
across the whole cluster, so all of the nodes within the cluster can retrieve data quickly,
and in addition, it eliminates the centralized network bottleneck. While delivering high-
performance and extraordinary data scalability (thousands of client hosts or KVMs
accessing to exabytes of data), it replicates and rebalances data within the cluster
dynamically.

After setting the configuration of the ceph network which is installed on a virtual
machine, credentials of the storage node, Data Avenue can start moving all of the
important data from the outer clouds (e.g. Amazon [12]) storage to the established S3
storage within the MTA Cloud. After a completed data transfer, virtual machines can use
the new S3 storage as a full value storage, containing exactly the same data, which were
on the Amazon cloud. Once the expensive computations are ready in the academic
cloud, there is an opportunity for transferring back the data of the results to a public
cloud using again Data Avenue. After the data migration, the data can be accessible for
the researchers within the MTA Cloud, using Data Avenue service, and our new Ceph
based, S3 storage.

The advantages of this solution are as follows. It is cloud independent, therefore it
can be established in many different type of clouds (private, public, hybrid, academic).
Furthermore, Data Avenue can communicate between several types of cloud storage

Figure 9: Use case architecture.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

78

types, therefore it can perform data transfer between two different types of cloud and
cloud storage flawlessly.

6. Performance measurements
For all the measurements the OpenStack-based (Mitaka) MTA Cloud was used as the

target cloud. Fig. 10 and Fig. 15 show the architecture, which was used for testing Data
Avenue. The architecture in the MTA Cloud consists of two node types: Data Avenue
and storage node. For measuring upload and download performance the architecture
shown in Fig. 10 was used, where there was only one S3 storage was used. The second,
architecture in Fig. 15 shows the architecture, which was used during measuring the
transfer rate performance of Data Avenue, where two S3 storage node is needed.

On the Data Avenue node, the Data Avenue application is running, and on the storage
nodes, an S3 ceph storage is running. The virtual machines had ”ml .medium” flavour
(2 VCPU, 4GB RAM, 40 GB disk), based on Ubuntu 16.04 OS images with cloud-init
support, and 2048 GB volume was attached to each S3 storage node. Docker [9] and
Ceph [11] (version 10.2.10) was used to build up the components. In order to make Data
Avenue able to manage large files as well (file size >50GB), we used 3GB memory heap
for Apache Tomcat 7 [13] on the Data Avenue node.

6.1. Data Avenue-mediated upload/download transfer rate vs. object size granularity
In this section we examine data upload and download functionality provided by Data

Avenue from two different perspectives:
• What is the overhead of transferring data through the intermediate node (Data

Avenue) instead of direct connection between the client and the storage?
• Does the granularity of the transferred data (file sizes) affect the transfer rate?
As described earlier, Data Avenue offers a uniform interface for clients, which is

accessible over plain HTTP (or secure HTTP protocols), thus, it can be used by simple
command-line tools, like curl or wget, whereas, forwarding clients data to the storage, or
vice versa, over the proprietary protocol, is done by Data Avenue. Clearly, this mediation
service has performance overhead for three reasons: a) the time to transfer a single
file includes the connection establishment cost between the client and Data Avenue
host in contrast to directly connecting to the storage, b) data are not directly transferred
between the client and the storage but through an intermediate node (Data Avenue), c)
the connection between the client and Data Avenue is single-threaded (data are passed
over a single HTTP connection) while proprietary storage connectivity tools (such as
AWS CLI) might use multiple threads to download/upload data. This overhead applies to
each individual transfer (REST API is stateless, meaning that Data Avenue does not re-
use storage connections from previous transfers). Reason a) involves a (slight) constant
penalty for each transfer, compared to direct connection, which might be significant when
passing files with small size, but less relevant at longer overall transfer time; reasons b)
and c) imply proportional overhead during the whole transfer.

To compare rates of direct and Data Avenue-mediated data transfers, a measurement
to transfer files of different sizes, using both Data Avenue and a proprietary tool (AWS
CLI) while using S3 storage was designed. Fig. 10 depicts this configuration. We
generated files with random content with the fohowing sizes: 1 MB, 10 MB, 100 MB, 1
GB, 10 GB, 100 GB. These are first uploaded to the S3 storage, then downloaded. We

Akos Hajnal, et al.

79

measured the transfer time with the total of 100GB data of each file size, i.e. 1 MB file
had been uploaded 100000 times, 10 GB ten times, one after the other, respectively.
Each experiment of transferring 100 GB file in different data packages was executed
ten times to calculate average transfer time from ten measurements. From these results
we derived the transfer rate value (MB/s) for each granularity, file size. We used curl [4]
(version 7.47.0) to communicate with Data Avenue REST API service, AWS CLI (version
1.14.7) in order to connect to the S3 storage directly. In our experiments all the hosts: S3
storage, Data Avenue server, client machine, were virtual machines resided in the same
cloud (MTA Cloud). As S3 storage Ceph-Rados gateway was used, which was deployed
in a Docker container, without HTTPS (plain HTTP was used to eliminate data encryption
overhead during this measurement in both direct and indirect connections). Download
rate includes the time of saving the received data to local disk to reflect real-world usage;
similarly, at upload, the file to be transferred is read from local disk.

The charts below show the transfer rates during upload (Fig. 11) and download (Fig.
13) at different granularities. Series DA in the chart show transfer rate values through
Data Avenue, series AWS represent values at using AWS CLI.

During upload, we expected slower overall transfer rate values for all file sizes, which
came true in file sizes above 10 MB; deceleration is at about 23% in this range. However,
in the case of smaller files (1-10 MB), the transfer through Data Avenue proved to be
even faster up to 3 times than direct transfer. Fig. 12 shows the proportion of of the
different transfer rates as bars at different granularities. The reason could be that Data
Avenue chooses different upload methods depending on the size of the object, as it is
show in table 2, and Data Avenue uses the Java implementation of AWS SDK, while AWS
CLI uses python.

During download, similar relation was experienced. In the range of file sizes above at
about 100 MB direct transfer (AWS) exceeded Data Avenue (DA) transfers by 39%. At
smaller file granularity, Data Avenue was more efficient, eventually by almost 4 times due
to the reasons in case of upload, as shown in Fig. 14.

In this chart, data series ”DA redirect” represent transfer rates using a special (X-
Accept-Redirects) option of Data Avenue (applicable only in the case of S3 download).

Figure 10: Uploading files using Data Avenue

Azerbaijan Journal of High Performance Computing, 1(1), 2018

80

Figure 11: Average upload transfer rate vs. object size granularity

Figure 12: Ratio of DA/AWS upload rate at different granularities

TABLE 2: S3 upload method depending on object size.

Object size S3 upload method used by Data Avenue

B - 10 MB
50 GB - 100 GB
100 GB - 500GB

500 GB -1 TB
TB - 5 TB / unknown size

HTTP PUT (AWS SDK PutObjectRequest)
Multipart upload (part size: 10 MiB, threads: 4)
Multipart upload (part size: 50 MiB, threads: 2)
Multipart upload (part size: 100 MiB, threads: 2)
Multipart upload (part size: 500 MiB, threads: 2)

Akos Hajnal, et al.

81

Using this option, Data Avenue only creates a pre-signed URL for the object to be
downloaded and immediately redirects the client to the pre-signed URL pointing to
the S3 storage (direct connection will then be established), so from now on no data is
transferred through the Data Avenue host. (When clients are allowed to connect directly
to outer storages, this option is useful; in private networks, where access to Internet is
restricted and bridging through Data Avenue is possible, this option will not work.) Using
DA redirect option can further increase the throughput compared to through-DA option,
as shown in the figure.

6.2. Migrating large-size data between different storages using Data Avenue
In this section, we investigate data transfer performance of Data Avenue during which

Figure 13: Average download transfer rate vs. object size granularity

Figure 14: Ratio of DA/AWS download rate at different granularities

Azerbaijan Journal of High Performance Computing, 1(1), 2018

82

we measure the transfer of large amount of data between different storage resources
(without having clients machine involved in the transfer). The question we would like to
answer is how the total transfer rate relates to the output rate of the source storage and
the input rate of the target storage.

The measurement was conveyed by transferring whole buckets from one storage to
the other, using Data Avenues copy function. Each bucket contained a total of 100 GBs
of data, but the contents of the different buckets composed of objects of different sizes:
1MB, 10MB, 100MB, 1GB, 10GB, 100GB, respectively.

In the this experiment, we transferred data between two storages, both resided in the

same cloud (MTA Cloud), as shown in Fig. 15.
The results of the measurements are shown in Fig. 16, in which we indicated the

transfer rate. Fig. 16 shows the ratio of DA and AWS transfer rates. In the case of
AWS, the transfer rate is calculated based on the download and upload transfer rates
presented in the previous section, and we assumed the copy with AWS CLI is done
by first downloading a given file and then uploading it to the target storage. (AWS CLI
cannot copy between two storages, therefore this sequential model is applied.) In the
case of Data Avenue, download and upload is done in parallel. This reason can explain,
why we obtained better results at all granularity. The speedup is significant in the case of
smaller files (similarly to uploads and downloads).

Figure 15: Architecture for testing data transfer in MTA Cloud

Figure 16: Average copy transfer rate vs. object size granularity

Akos Hajnal, et al.

83

Figure 17: Ratio of DA/AWS data transfer rate at different granularities

7. Related work
Numerous commercial tools and services are available to manage data migration,

such as Mover, CloudFuze, Cloudsfer, CloudFASTPATH, Veritas, Comm Vault, Mult-
Cloud . They cover most of the popular cloud storage technologies and providers,
including Amazon S3, Microsoft Azure, Google Drive, Google Cloud Storage, Drop- Box,
OneDrive, Mega, Egnyte, to name a few, allowing to manage storages individually or
transfer data between any two of them. Most services ensure data security (end-to-
end encryption), reliable data transfer (failover), scheduled tasks (e.g. daily backups),
data synchronization (incremental transfers). Most of them are based on a central
service (web portal) through which registered users can perform their data migration
tasks. CloudFuze, CloudFASTPATH, and Veritas offer hosted service, which allows to
deploy the software on premise. However, none of these tools support access to legacy
storages such as GridFTP, SRM, iRODS, or open source cloud storage solutions such as
OpenStack Swift, which are supported by Data Avenue.

Globus [14] is also a commercial tool which supports GridFTP storages, and now
can connect to S3-compliant cloud storages and Google Drive. Globus (as well as Data
Avenue) allows of ’’third-party” transfers between GridFTP sites, in which case, the data
is exchanged directly between the two storages. Data Avenue also use server-side
transfers on S3 when copying data between regions or within the same storage.

To our knowledge, only CloudFASTPATH and Globus provide API, which would
allow to fetch data from program codes, or upload large result sets back to these cloud
storages. Through Data Avenue’s REST or SOAP API, all data management operations
are possible, which opens the possibility to automate data access from either scripts,
workflow systems, and other program codes. Data Avenue is a hosted application, which

Azerbaijan Journal of High Performance Computing, 1(1), 2018

84

can thus support data processing considering data locality, i.e. it can be deployed next
to the storage and performing data bridging to application codes or other supported
cloud storages if needed. Data Avenue also enables multi-user usage, and it is possible
to setup distributed configurations, or to scale on-demand, depending on the customer
needs.

CERN’s File Transfer Service is a data movement service aims at reliably copying
data between different GridFTP storages, which uses third-party copy. FTS does not
support cloud storages.

Generic Storage Service (GSS) [15] was developed within the CloudFlow
Infrastructure, which provides a technology platform for cloud based workflows in order
to support different cloud storage accesses. Basic functionalities such as listing files,
creating folders are made directly through the SOAP API. Data transfer between two
storages is not supported, and in contrast to Data Avenue, it supports only OpenStack
Swift and dedicated HPC storages.

Among the free tools we can only mention DragonDisk14, which can connect to
S3-compliant storages and providers including Google Cloud Storage, GreenQloud.
DragonDisk can be used to manage data on such storages (upload, download, create
buckets, directories, delete, rename, etc.), to copy or synchronize data between different
connected storages. Cyberduck15 and Transmit16 are similar desktop applications
(commercial). They support most of the popular cloud storage providers Amazon S3,
Google Cloud Storage, DropBox, Microsoft Azure, Blackblaze, to mention a few. These
are desktop applications, which however cannot be used as a service (to perform long
running background transfers) in contrast to Data Avenue.

8. Conclusions
Transferring large data sets among storages is an important task both for scientific

applications and in commercial usage. The paper describes a potential solution called
Data Avenue. This tool is offered and used in MTA Cloud which is the cloud of the
researchers of the Hungarian Academy of Sciences. It is also used for commercial
applications in the EU H2020 project Cloudifacturing. Data Avenue has been further
developed in the EU H2020 project COLA [16] by MTA SZTAKI and CloudSME UG in
order to produce its commercial version.

Data Avenue represents a very flexible solution for data migration in many respects.
It provides several configuration possibilities by which both personal usage and
organizational and global service can be set up. Its built-in security mechanisms also
support all these configuration and usage possibilities. The GUI enables the easy use
for humans and the REST API supports the usage by software systems like work- flows.
Although Data Avenue was originally developed for grid and cloud systems due to the
recent further developments, it is now a good candidate to transfer data among various
cloud systems, too. Its Amazon S3 and OpenStack Swift plugins can cover a very large
set of academic and public clouds. The recently developed Google Cloud Storage and
Microsoft Azure plugins are in test phase and soon will be available for extending the set
of clouds that can be served by Data Avenue.

Interested readers can try Data Avenue in several ways according to the different
usage modes described in Section 2. Public service deployment can be found at Data

Akos Hajnal, et al.

85

Avenue website. This file transfer service is freely available for everyone based on the
GUI of a previous release but in principle very similar to the latest GUI described in this
paper. The personal server host deployment can be tried based on the tutorial available
on the Occopus [17] web page [18]. This can be tried by anyone who has access
to a cloud system. Finally, a similar tutorial is available for the Hungarian academic
researchers on the MTA Cloud web page in Hungarian.

Acknowledgement
This work was partially funded by the European COLA - Cloud Orchestration at the

Level of Application project under grant No. 731574 (H2020-ICT-2016-1). On behalf of
the Data Avenue project we thank for the usage of MTA Cloud that significantly helped
us achieving the results published in this paper.

References
[1].	 Allcock, W. (2003) GridLTP: Protocol Extensions to FTP for the Grid, Global Grid

ForumGFD-R-P.020.
[2].	 Shoshani, A. (2002) Storage Resource Management, GGF-4. Retrieved from:

https://sdm.lbl.gov/srm-wg/doc/02.02.srm.joint.design/index.htm
[3].	 Lemaitre, S., Frohner, A., Baud, J.P., Smith, D., Nienartowicz, K., Abadie, L.,

Mollon, R. (2007) Recent developments in LFC. CHEP07.
[4].	 Hajnal, A., Marton, I., Farkas, Z., Kacsuk, P., Remote storage management

in science gateways via data bridging, Concurrency and Computation: Practice and
Experience, 27 (16)., 4398-4411.

[5].	 Kacsuk, P, Farkas, Z., Kozlovszky, M., Herman, G., Balasko, A., Karoczkai, K.,
Marton, I. (2012) WS-PGRADE/gUSE generic DCI gateway framework for a large variety
of user communities”, Journal of Grid Computing, 10(4).

[6].	 Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi,B., Hajnal, A., Farkas, A., Gesmier, G.,
Terstyanszky, G. (2017) ’MiCADOMicroservice-based Cloud Application-level Dynamic
Orchestrator, Future Generation Computer Systems.

[7].	 MTA Cloud website https://cloud.mta.hu/
[8].	 HBONE website https://www.niif.hu/en/hbone_hbone
[9].	 Docker website https://www.docker.com/
[10].	Data Avenue website https://data-avenue.eu/
[11].	Ceph website https://ceph.com/
[12].	AWS website https://aws.amazon.com/
[13].	Apache Tomcat website https://tomcat.apache.org
[14].	A. William, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I.

Foster, The Globus striped GridFTP framework and server, in proceedings of the 2005
ACM/IEEE conference on Supercomputing, IEEE Computer Society, p. 54, 2005.

[15].	Havard Heido Holm, Jon M. Hjelmervik, Volkan Gezer, ’’CloudFlow-
AnlnfrastructureforEngineeringWorkowsintheCloud”, UBICOMM 2016 : The 24 Tenth
International Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (2016)

[16].	COLA project website https://project-cola.eu/
[17].	Jozsef Kovacs, Peter Kacsuk, ’’Occopus: a Multi-Cloud Orchestrator to Deploy

Azerbaijan Journal of High Performance Computing, 1(1), 2018

86

and Manage Complex Scientific Infrastructures”, Journal of Grid Computing, Volume 16,
Issue 1, pp 1937, 2018

[18].	Occopus website http://occopus.lpds.sztaki.hu/

Submitted 10.02.2018
Accepted 24.05.2018

Akos Hajnal, et al.

