Mineralogy, trace element composition, classification of Onello high-Ni ataxite

Cover Page

Cite item

Full Text

Abstract

The trace element composition of the Onello meteorite is analyzed in detail using SEM and LA-ICP-MS. The following Ni contents of minerals are determined (wt %): 23.0-25.4 in taenite, 5.8-8.8 in kamacite, 22-26 in schreibersite, 44-52 in nickelphosphide, 20.6-21.8 in allabogdanite, and 75-81 in awaruite. In the trace element content, the Onello meteorite corresponds to the IAB group of iron meteorites. Inside this group, it mostly matches the sHH subgroup (with high Au and Ni contents). The presence of allabogdanite in the meteorite indicates the high PT parameters of its formation: >8 GPa and 1000-1400 °C. Thus, the formation of the Onello meteorite is related to impact metamorphism of a parental body of iron meteorites of the IAB group and vinonaites, in which a P- and Ni-rich area underwent melting and further crystallization.

About the authors

K. D. Litasov

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: klitasov@igm.nsc.ru
Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090; 1, Pirogova street, Novosibirsk, 630090

A. Ishikawa

Tokyo Institute of Technology

Email: klitasov@igm.nsc.ru
Japan, 2-12-1, Meguro-ku, Ookayama, Tokyo, 152-8550

A. G. Kopylova

Diamond and Precious Metal Geology Institute of Siberian Branch Russian Academy of Sciences

Email: klitasov@igm.nsc.ru
Russian Federation, 39, Lenin avenue, Yakutsk, 677980

N. M. Podgornykh

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: klitasov@igm.nsc.ru
Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

N. P. Pokhilenko

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: klitasov@igm.nsc.ru

Academician of the Russian Academy of Sciences

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

References

  1. Kleine T., Touboul M., Bourdon B., Nimmo F., Mezger K., Palme H., Jacobsen S.B., Yin Q.Z., Halliday A.N. // Geochim. Cosmochim. Acta. 2009. V. 73. P. 5150-5188.
  2. Goldstein J.I., Scott E.R.D., Chabot N.L. // Chemie Der Erde-Geochem. 2009. V. 69. P. 293-325.
  3. Wasson J.T., Kallemeyn G.W. // Geochim. Cosmochim. Acta. 2002. V. 66. P. 2445-2473.
  4. Копылова А.Г., Олейников Б.В., Соболев Н.В., Сушко О.А. // ДАН. 1999. Т. 368. № 2. С. 236-238.
  5. Копылова А.Г., Олейников Б.В. // Зап. ВМО. 2000. № 5. С. 37-43.
  6. Britvin S.N., Rudashevsky N.S., Krivovichev S.V., Burns P.C., Polekhovsky Y.S. // Amer. Mineral. 2002. V. 87. P. 1245-1249.
  7. Литасов К.Д., Исикава А., Бажан И.С., Пономарев Д.С., Хирата Т., Подгорных Н.М., Похиленко Н.П. // ДАН. 2018. Т. 478. № 1. С. 81-85.
  8. Raghavan V. // J. Phase Equilibria and Diffusion. 2010. V. 31. P. 369-371.
  9. Dera P., Lavina B., Borkowski L.A., Prakapenka V.B., Sutton S.R., Rivers M.L., Downs R.T., Boctor N.Z., Prewitt C.T. // Geophys. Res. Lett. 2008. V. 35. L10301. DOI: 10310.11029/12008GL033867.
  10. Stewart A.J., Schmidt M.W. // Geophys. Res. Lett. 2007. V. 34. L13201. DOI: 13210.11029/12007GL030138.
  11. Zaitsev A.I., Dobrokhotova Z.V., Litvina A.D., Mogutnov B.M. // J. Chem. Soc., Faraday Trans. 1995. V. 91. P. 703-712.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies