Tochnost', proizvoditel'nost' i perenosimost' mezhchastichnykh potentsialov dlya splavov Al–Cu: sravnenie modeley pogruzhennogo atoma i glubokogo mashinnogo obucheniya

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In several recent years, a significant progress has been made in atomistic simulation of materials, involving the application of machine learning methods to constructing classical interatomic interaction potentials. These potentials are many-body functions with a large number of variable parameters whose values are optimized with the use of energies and forces calculated for various atomic configurations by ab initio methods. In the present paper a machine learning potential is developed on the basis of deep neural networks (DP) for Al–Cu alloys, and the accuracy and performance of this potential is compared with the embedded atom potential. The analysis of the results obtained implies that the DP provides a sufficiently high accuracy of calculation of the structural, thermodynamic, and transport properties of Al–Cu alloys in both solid and liquid states over the entire range of compositions and a wide temperature interval. The accuracy of the embedded atom model (EAM) in calculating the same properties is noticeably lower on the whole. It is demonstrated that the application of the potentials based on neural networks to the simulation on modern graphic processors allows one to reach a computational efficiency on the same order of magnitude as those of the embedded atom calculations, which at least four orders of magnitude higher than the computational efficiency of ab initio calculations. The most important result is that about the possibility of application of DP parameterized with the use of configurations corresponding to melts and perfect crystals to the simulation of structural defects in crystals and interphase surfaces.

About the authors

E. O. Khazieva

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural Federal University

Email: cat.hazieva@yandex.ru
620016, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

N. M. Shchelkachev

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences

Email: cat.hazieva@yandex.ru
620016, Yekaterinburg, Russia; 142190, Troitsk, Moscow, Russia

A. O. Tipeev

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Department of Materials Engineering, Federal University of São Carlos

Email: cat.hazieva@yandex.ru
620016, Yekaterinburg, Russia; 13565-905, São Carlos, SP, Brazil

R. E. Ryl'tsev

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural Federal University

Author for correspondence.
Email: cat.hazieva@yandex.ru
620016, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

References

  1. Y. Mishin, Acta Mater. 214, 116980 (2021).
  2. Г. Э. Норман, С. В. Стариков, В. В. Стегайлов, ЖЭТФ 141, 910 (2012).
  3. E. M. Kirova, G. E. Norman, and V. V. Pisarev, Comput. Mater. Sci. 172, 109367 (2020).
  4. Р. М. Хуснутдинов, А. В. Мокшин, С. Г. Меньшикова, А. Л. Бельтюков, В. И. Ладьянов, ЖЭТФ 149, 9941004 (2016).
  5. R. M. Khusnutdino, R. R. Khairullina, A. L. Beltyukov, V. I. Lad'yanov, and A. V. Mokshin, J. Phys.: Cond. Matt. 33, 104006 (2021).
  6. B. N. Galimzyanov and A. V. Mokshin, Int. J. Sol. Struct. 224, 111047 (2021).
  7. M. Ceriotti Michele, C. Clementi, and O. A. von Lilienfeld, J. Chem. Phys. 154, 160401 (2021).
  8. Y. Mishin, Acta Materialia 214, 116980 (2021).
  9. J. A. von Lilienfeld and K. Burke, Nature Communications 11, 4895 (2020).
  10. J. Behler and G. Cs'anyi, Eur. Phys. J. B 94, 142 (2021).
  11. V. L. Deringer, J. Phys.: Energy 2, 041003 (2020).
  12. N. Mueller, A. Hernandez, and Wang Chuhong, J. Chem. Phys. 152, 050902 (2020).
  13. V. L. Deringer, M. A. Caro, and G. Cs'anyi, Advanced Materials 31, 1902765 (2019).
  14. J. Behler, J. Chem. Phys. 145, 170901 (2016).
  15. И. А. Балякин, Р. Е. Рыльцев, Н. М. Щелкачев, Письма в ЖЭТФ 117, 377384 (2023).
  16. M. Benoit, J. Amodeo, S.Combettes, I. Khaled, A. Roux, and J. Lam, Mach. Learn.: Sci. Technol 2 025003 (2021).
  17. B. Monserrat, J. G. Brandenburg, E. A. Engel, and Bingqing Cheng, Nat Commun 11, 5757 (2020).
  18. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld., Metall. Mater. Trans. A 39, 3040 (2008).
  19. B.-J. Lee and M. I. Baskes, Phys. Rev. B 62, 8564 (2000).
  20. A. Mahata, T. Mukhopadhyay, and Mohsen Asle Zaeem, Comput. Mater. Sci. 201, 110902 (2022).
  21. E. Asadi, M. Asle Zaeem, S. Nouranian, and M. I. Baskes, Acta Materialia 86, 169181 (2015).
  22. B.-J. Lee, J.-H. Shim, and M. I. Baskes, Phys. Rev. B 68, 144112 (2003).
  23. T. Wen, L. Zhang, H. Wang, E. Weinan, and D. J. Srolovitz, Materials Futures 1, 022601 (2022).
  24. Niu Haiyang, L. Bonati, P. M. Piaggi, and M. Parrinello, Nature Commun. 11, 2654 (2020).
  25. G. M. Sommers, A. M. F. Calegari, Zhang Linfeng, Wang Han, and R. Car, Phys. Chem. Chem. Phys. 22, 10592 (2020).
  26. T. E. Gartner, Zhang Linfeng, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, PNAS 117, 26040 (2020).
  27. I. A. Balyakin, S. V. Rempel, R. E. Ryltsev, and A. A. Rempel, Phys. Rev. E. 102, 052125 (2020).
  28. T. Wen, Wang Cai-Zhuang, M. J. Kramer, Sun Yang, Ye Beilin, Wang Haidi, Liu Xueyuan, Zhang Chao, Zhang Feng, Ho Kai-Ming, and Wang Nan, Phys. Rev. B 100, 174101 (2019).
  29. L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, C. Z. Wang, Phys. Chem. Chem. Phys. 22, 18467 (2020).
  30. Zhang Linfeng, Wang Han, R. Car, and E. Weinan, J. Chem. Phys. 152, 154701 (2021).
  31. C. M. Andolina, P. Williamson, and W. A. Saidi, J. Chem. Phys. 126, 236001 (2020).
  32. E. V. Podryabinkin, A. V. Shapeev, Comput. Mater. Sci. 140, 171 (2017).
  33. Y. Zhang et al., Comput. Phys.Commun. 253, 107206 (2020).
  34. V. T. Witusiewicz, U. Hecht, S. G. Fries, and S. Rex, J. Alloys Comp. 385, 133 (2004).
  35. C. W. Bale, P. Chartrand, S. A. Degterov et al., Calphad 26, 189 (2002).
  36. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
  37. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  38. J. P. Perdew and Wang Yue, Phys. Rev. B 46, 6671 (1992).
  39. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  40. R. E. Ryltsev and N. M. Chtchelkatchev, J. Mol. Liq. 349, 118181 (2022).
  41. J. Brillo and I. Engry, Z. Metallkd. 95, 691 (2004).
  42. J. W. Arblaster, ASM International Materials Park 684, (2018).
  43. E. S. Levin, G. D. Ayushina, and P. V. Gel'd, High Temperature 6, 416418 (1968).
  44. W. J. Coy and R. S. Mateer, Trans. Amer. Soc. Metals 58, 99 (1955).
  45. A. A. Aleksashkina, M. M. Demin, V. I. Mazhukin, Keldysh Institute preprints 066, (2018).
  46. S. Y. Wang, M. J. Kramer, M. Xu, S. Wu, S. G. Hao, D. J. Sordelet, K. M. Ho, and C. Z. Wang, Phys. Rev. B 79, 144205 (2009).
  47. U. K. Stolz, I. Arpshofen, F. Sommer and B. Predel, J. Phase Equilibria 14, 473 (1993).
  48. V. M. Sandakov, Esin Yu. O., P. V Gel'd, V. D. Shantarin, Russ. J. Phys. Chem. 45, 1150 (1971).
  49. F. Birch, Phys. Rev. 71, 809 (1947).
  50. R. E. Ryltsev and N. M. Chtchelkatchev. J. Chem. Phy. 141, 124509 (2014).
  51. A. McDonough, S. P.Russo, and I. K. Snook, Phys. Rev. E 63, 026109 (2001).
  52. M. H. Ernst, Phys. Rev. E 71, 030101 (2005).
  53. In-Chul Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
  54. V. I. Deshchenya, N. D. Kondratyuk, A. V. Lankin, and G. E. Norman, Russ. J. Phys. Chem. A 96, 556 (2022).
  55. U. Dahlborg, M. Besser, M. J. Kramer, J. R. Morris, and M. Calvo-Dahlborg, Physica B 412, 50 (2013).
  56. J. Brillo, S. M. Chathoth, M. M. Koza, and A. Meyer, Appl. Phys. Lett. 93, 121905 (2008).
  57. W. Y. Wang, J. J. Han, H. Z. Fang, J. Wang, Y. F. Liang, S. L. Shang, Y. Wang, X. J. Liu, L. J. Kecskes, S. N. Mathaudhu, X. Hui, and Z. K. Liu, Acta Materialia 97, 75 (2015).
  58. C. Rey-Castro and L. F. Vega, J. Phys. Chem. B 110, 14426 (2006).
  59. M. Schick, J. Brillo, I. Egry, and B. Hallstedt, J. Mater. Sci. 47, 8145 (2012).
  60. N. Ouchi et al., Proc. 9th Asian Thermophysical Properties Conference, Beijing, China, 109301 (2010).
  61. A. V. Karavaev, V. V. Dremov, and F. A. Sapozhnikov, J. Nuclear Materials 524, 149 (2019).
  62. V. V. Dremov, P. V. Chirkov, and A. V. Karavaev, Sci. Rep. 11, 934 (2021).
  63. V. V. Dremov and A. V. Karavaev, Procedia Manufacturing 37, 599 (2019).
  64. D. Marchand, A. Jain, A. Glensk, and W. A. Curtin, Phys. Rev. Materials 4, 103601 (2020).
  65. D. Marchand and W. A. Curtin, Phys. Rev. Materials 6, 053803 (2022).
  66. К. Ю. Окишев, Кристаллохимия и дефекты кристаллического строения: учебное пособие, Изд-во ЮУрГУ (2007).
  67. Guo Zhuoqiang et al., Proc. 27th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (2022).
  68. F. Dorner, Z. Sukurma, C. Dellago, and G. Kresse, Phys. Rev. Lett. 121, 195701 (2018).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies