Effect of Quinoline Additions on the Activity of In Situ Formed NiWS Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of quinoline additions and amount of the sulfiding agent added on the activity of the in situ prepared NiWS catalyst in naphthalene hydrogenation was studied. In the presence of 1 wt % quinoline, the obtained catalyst shows high activity (>95% naphthalene conversion). The physicochemical properties of the catalyst were studied by XPS, X-ray diffraction analysis, and TEM. At the W : substrate molar ratio of 1 : 40 and 360°С, an increase in the amount of the sulfiding agent from 1 to 5 wt % leads to a decrease in the selectivity with respect to decalins from 68 to 39%, respectively. The degree of decoration with nickel on adding 1 wt % sulfiding agent is 0.1. As the amount of the sulfiding agent added is increased to 5 wt %, the degree of decoration with nickel increases to 0.3.

About the authors

A. F. Ziniatullina

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

T. S. Kuchinskaya

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kuchinskaya@ips.ac.ru
119991, Moscow, Russia

M. I. Knyazeva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. L. Maksimov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Marafi A., Albazzaz H., Rana M.S. Hydroprocessing of heavy residual oil: opportunities and challenges // Catal Today. 2019. V. 329. P. 125-34.https://doi.org/10.1016/j.cattod.2018.10.067
  2. Guerrero-Ruiz A., Sepulveda-Escribano A., Rodriguez-Ramos I., Lopez-Agudo A., Fierro J.L.G. Catalytic behaviour of carbon-supported FeM (M = Ru, Pt) in pyridine hydrodenitrogenation // Fuel. 1995. V. 74. P. 279-283. https://doi.org/10.1016/0016-2361(95)92666-T
  3. Looi P.Y., Mohamed A.R., Tye C.T. Hydrocracking of residual oil using molybdenum supported over mesoporous alumina as a catalyst // Chem. Eng. J. 2012. V. 181. P. 717-724. https://doi.org/10.1016/j.cej.2011.12.080
  4. Trakarnpruk W., Seentrakoon B., Porntangjitlikit S. HDS of diesel oils by MoS2 catalyst prepared by in situ decomposition of ammonium thiomolybdate // Silpakorn University Science and Technology Journal 2. 2008. V. 7. P. 133. https://doi.org/10.14456/sustj.2008.1
  5. Trejo F., Ancheyta J. Kinetics of asphaltenes conversion during hydrotreating of Maya crude // Catal. Today. 2005. V. 109. № 1-4. P. 99-103. https://doi.org/10.1016/j.cattod.2005.08.005
  6. Raghuveer C.S., Thybaut J.W., De Bruycker R., Metaxas K., Bera T., Marin G.B. Pyridine hydrodenitrogenation over industrial NiMo/γ-Al2O3 catalyst: Application of gas phase kinetic models to liquid phase reactions // Fuel. 2014. V. 125. P. 206-218. https://doi.org/10.1016/j.fuel.2014.02.017
  7. Marafi A., Hauser A., Stanislaus A. Deactivation patterns of Mo/Al2О3, Ni-Mo/Al2O3 and Ni-MoP/Al2O3 catalysts in atmospheric residue hydrodesulphurization // Catal. Today. 2007. V. 125. № 3-4. P. 192-202. https://doi.org/10.1016/j.cattod.2007.03.060
  8. Сизова И.А., Максимов А.Л. Сульфидные Ni-Mo катализаторы гидрирования нафталина, полученные in situ разложением маслорастворимых прекурсоров // Наногетерогенный катализ. 2017. Т. 2. № 1. С. 50-54. https://doi.org/10.1134/S2414215817010099
  9. Sizova I.A., Maksimov A.L. Nickel-molybdenum sulfide naphthalene hydrogenation catalysts synthesized by the in situ decomposition of oil-soluble precursors // Petol. Chemistry. 2017. V. 57. P. 595-599. https://doi.org/10.1134/S096554411707009X.
  10. Zepeda T.A., Pawelec B., Obeso-Estrella R., de León J.D., Fuentes S., Alonso-Núñez G., Fierro J.L.G. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P // Appl. Catal., B. 2016. V. 180. P. 569-579. https://doi.org/10.1016/j.apcatb.2015.07.013
  11. Humbert S., Izzet G., Raybaud P. Competitive adsorption of nitrogen and sulphur compounds on a multisite model of NiMoS catalyst: A theoretical study // J. Catal. 2016. V. 333. P. 78-93. https://doi.org/10.1016/j.jcat.2015.10.016
  12. Rana M.S., Al-Barood A., Brouresli R., Al-Hendi A.W., Mustafa N. Effect of organic nitrogen compounds on deep hydrodesulfurization of middle distillate // Fuel Process. Technol. 2018. V. 177. P. 170-178. https://doi.org/10.1016/j.fuproc.2018.04.014
  13. Venuti Björkman J.J., Hruby S.L., Pettersson L.J., Kantarelis E. Investigating the Effects of Organonitrogen Types on Hydrodearomatization Reactions over Commercial NiMoS Catalyst // Catalysts. 2022. V. 12. № 7. P. 736. https://doi.org/10.3390/catal12070736
  14. Никульшина М.С., Можаев А.В., Никульшин П.А. Влияние хинолина на гидрообессеривание и гидрирование на би- и триметаллических NiMo(W)/Al2O3-катализаторах гидроочистки // Журнал прикладной химии. 2019. Т. 92. № 1. С. 87-94. https://doi.org/10.1134/S0044461819010122
  15. Nikul'shina M.S., Mozhaev A.V., Lancelot C., Blanchard P., Lamonier C., Nikul'shin P.A. Effect of quinoline on hydrodesulfurization and hydrogenation on bi- and trimetallic NiMo(W)/Al2O3 hydrotreating catalysts // Russ. J. Appl. Chem. 2019. V. 92. P. 105-112. https://doi.org/10.1134/S10704272190100154.
  16. Вутолкина А.В., Махмутов Д.Ф., Занина А.В., Максимов А.Л., Копицын Д.С., Глотов А.П., Егазарьянц С.В., Караханов Э.А. Гидропревращение производных тиофена на дисперсных Ni-Mo сульфидных катализаторах // Наногетерогенный катализ. 2018. Т. 3, № 2. С. 130-135. https://doi.org/10.1134/S2414215818020144
  17. Vutolkina A.V., Makhmutov D.F., Zanina A.V., Maximov A.L., Kopitsin D.S., Glotov A.P., Egazar'yants S.V., Karakhanov E.A. Hydroconversion of thiophene derivatives over dispersed Ni-Mo sulfide catalysts // Petol. Chemistry. 2018. V. 58. P. 1227-1232. https://doi.org/10.1134/S0965544118140141.
  18. Кучинская Т.С., Мамян Л.Г., Князева М.И. Гидродеоксигенация дифениливого эфира на полученном in situ NiMoS катализаторе // Наногетерогенный катализ. 2021. Т. 6. № 2. С. 107-113. https://doi.org/10.56304/S2414215821020040
  19. Kuchinskaya T.S., Mamian L.G., Kniazeva M.I. Hydrodeoxygenation of diphenyl ether over an in situ NiMoS catalyst // Petrol. Chemistry. 2021. V. 61. P. 1124-1130. https://doi.org/10.1134/S0965544121100054.
  20. Vutolkina A.V., Baigildin I.G., Glotov A.P., Pimerzin A.A., Akopyan A.V., Maximov A.L., Karakhanov E.A. Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene // Appl. Catal., B. 2022. V. 312. P. 121403. https://doi.org/10.1016/j.apcatb.2022.121403
  21. Сизова И.А., Сердюков С.И., Максимов А.Л. Никель-вольфрамовые сульфидные катализаторы, полученные in situ в углеводородной среде, для гидрирования ароматических углеводородов // Нефтехимия. 2015. Т. 55. № 4. С. 319-319. https://doi.org/10.7868/S0028242115040115
  22. Sizova I.A., Serdyukov S.I., Maksimov A.L. Nickel-tungsten sulfide aromatic hydrocarbon hydrogenation catalysts synthesized in situ in a hydrocarbon medium // Petol. Chemistry. 2015. V. 55. P. 470-480. https://doi.org/10.1134/S0965544115060110.
  23. Вутолкина А.В., Махмутов Д.Ф., Занина А.В., Максимов А.Л., Глотов А.П., Синикова Н.А., Караханов Э.А. Гидрирование ароматических субстратов на дисперсных Ni-Mo сульфидных катализаторах в системе H2O/CO // Наногетерогенный катализ. 2018. Т. 3. № 1. С. 12-17. https://doi.org/10.1134/S2414215818010094
  24. Vutolkina A.V., Makhmutov D.F., Zanina A.V., Maximov A.L., Glotov A.P., Sinikova N.A., Karakhanov E.A. Hydrogenation of aromatic substrates over dispersed Ni-Mo sulfide catalysts in system H2O/CO // Petrol. Chemistry. 2018. V. 58. P. 528-534. https://doi.org/10.1134/s0965544118070095.
  25. Hashemi R., Nassar N.N., Almao P.P. Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges // Appl. Energy. 2014. V. 133. P. 374-387. https://doi.org/10.1016/j.apenergy.2014.07.069
  26. Хаджиев С.Н., Кадиев Х.М., Зекель Л.А., Кадиева М.Х. Гидроконверсия тяжелой нефти в присутствии ультрадисперсного катализатора // Наногетерогенный катализ. 2018. Т. 3. № 1. С. 18-24. https://doi.org/10.1134/S2414215818010045
  27. Khadzhiev S.N., Kadiev K.M., Zekel' L.A., Kadieva M.K. Heavy oil hydroconversion in the presence of ultrafine catalyst // Petol. Chemistry. 2018 V. 58. P. 535-541. https://doi.org/10.1134/S0965544118070046.
  28. Ma Y., Zhang J., Wu W., Cai Z., Cao Y., Huang K., Jiang L. Trialkylmethylammonium molybdate ionic liquids as novel oil-soluble precursors of dispersed metal catalysts for slurry-phase hydrocracking of heavy oils // Chem. Eng. Sci. 2022. V. 253. P. 117516. https://doi.org/10.1016/j.ces.2022.117516
  29. Leglise J., van Gestel J., Duchet J.C., Promotion and inhibition by hydrogen sulfide of thiophene hydrodesulfurisation over a sulfide catalyst // J. Chem. Soc., Chem. Commun. 1994. № 5. P. 611-612. https://doi.org/10.1039/C39940000611
  30. Furimsky E., Massoth F. E. Hydrodenitrogenation of petroleum // Catal. Rev. 2005. V. 47. № 3. P. 297-489. https://doi.org/10.1081/CR-200057492

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies