ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Additives in UV-activated urethane acrylate polymerization composite coatings; pp. 88–93
PDF | doi: 10.3176/proc.2015.1S.04

Authors
Zane Grigale-Sorocina, Martins Kalnins, Jana Simanovska, Elīna Vindedze, Ingmars Birks, Evita Brazdauska
Abstract

Thin UV curable coating systems is an important research field from the industrial perspective due to the improved environmental profile and wide varieties of characteristics. When used for short-term applications as coatings on natural nail for esthetical and medical reasons, the system may be manipulated to attain various properties, either desired or required by the manufacturer e.g. ensuring both excellent long-term properties (deformability, toughness, and good adhesion) and short-term properties (ability to be destroyed quickly after use). Performance of thin UV curable urethane acrylate composite coatings was investigated depending on the content of the additive. Nitrocellulose (NC), cellulose acetate butyrate (CAB), sucrose benzoate (SB), and silica were evaluated to determine their influence on unreacted composite characteristics (viscosity, suspension pigment stability) and reacted film characteristics (ultimate strength, elongation at break, surface gloss, surface micro hardness, and film adhesion loss). According to the tests performed all additives increase the modulus of elasticity. CAB and NC increase the elongation at break values, and strongly increase the uncured gel viscosity, what makes it inconvenient for application.

References

 

  1. Jančovičová, V., Mikula, M., Havlinova, B., and Jaku­bikova, Z. Influence of UV-curing conditions on polymerization kinetics and gloss of urethane acrylate coatings. Progr. Org. Coat., 2013, 76, 432–438.
http://dx.doi.org/10.1016/j.porgcoat.2012.10.010

  2. Milinavičiūtė, A., Jankauskaitė, V., and Narmontas, P. Properties of UV-Curable Hyperbranched Urethane-Acrylate Modified Acrylic Monomer Coatings. Mater. Sci. (Medžiagotyra), 2011, 17(4), 378–383.

  3. Yaldiz, C. E., Veinthal, R., Gregor, A., and Georgiadis, K. Mechanical properties of thin hard coatings on TiC-NiMo substrates. Estonian J. Eng., 2009, 15, 329–339.
http://dx.doi.org/10.3176/eng.2009.4.10

  4. Harry, E., Rouzaud, A., Ignat, M., and Juliet, P. Mech­anical properties of W and W(C) thin films: Young’s modulus, fracture toughness and adhesion. Thin Solid Films, 1998, 332, 195–201.
http://dx.doi.org/10.1016/S0040-6090(98)01056-6

  5. Atanacio, A. J., Latella, B. A., Barbé, C. J., and Swain, M. V. Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf. Coat. Tech., 2005, 192, 354–364.
http://dx.doi.org/10.1016/j.surfcoat.2004.06.004

  6. Grigale-Sorocina, Z. et al. UV-activated polymerization composites. Mater. Sci. (Medžiagotyra). Forthcoming.

  7. Koschar, M. Easily removable nail polish composition. Germany Patent DE102011102661 A1, 29 November 2012.

  8. Misbah, S., Khalid, M. Z., Haq N. B., Tahir, J., Rizwan, H., and Zuber, M. Modification of cellulosic fiber with polyurethane acrylate copolymers. Part I: physicochemical prop­erties. Carbohyd. Polym., 2012, 87, 397–404.
http://dx.doi.org/10.1016/j.carbpol.2011.07.070

  9. Gällstedt, M., Törnqvist, J., and Hedenqvist, M. S. Prop­erties of nitrocellulose-coated and polyethylene-laminated chitosan and whey films. J. Polym. Sci. Polym. Phys., 2001, 39, 985–992.
http://dx.doi.org/10.1002/polb.1075

10. El-Shafee, E., Saad, G. R., and Fahmy, S. M. Miscibility, crystallization and phase structure of poly(3-hydro­xybutyrate)/cellulose acetate butyrate blends. Eur. Polym. J., 2001, 37, 2091–2104.
http://dx.doi.org/10.1016/S0014-3057(01)00097-0

11. Schoon, D. D. Nail Structure and Product Chemistry. Cengage Learning, Milady, 2nd ed., 2005.

12. Zamani, Y., Lahijania, K., Mohseni, M., and Bastani, S. Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments. Tribol. Int., 2014, 69, 10–18.
http://dx.doi.org/10.1016/j.triboint.2013.08.010

13. There’s a Secret to Perfect Coatings and Inks: HdkÒ Pyrogenic Silica. Wacker Silicones, Munich, 2006.

14. Horacio, E. B. and Roberts, O. W. Colloidal Silica: Funda­mentals and Applications. CRC Press, Taylor & Francis Group, U.S.A., 2006.

15. Džunuzović, E. S., Tasić, S. V., Božić, B. R., Džunu­zović, J. V., Dunjić, B. M., and Jeremić, K. B. Mech­anical and thermal properties of UV cured mixtures of linear and hyperbranched urethane acrylates. Progr. Org. Coat., 2012, 74, 158–164.
http://dx.doi.org/10.1016/j.porgcoat.2011.12.004

16. [ISO] International Organization for Standardization. 1995. Plastics – Determination of tensile properties – Part 3: Test conditions for films and sheets. BS EN ISO 527-3: 2000th Plastic (in Latvian).

17. Gonçalves, F., Boaro, L. C., Ferracane, J. L., and Braga, R. R. A comparative evaluation of polymeriza­tion stress data obtained with four different mech­anical testing systems. Dent. Mater., 2012, 28, 680–686.
http://dx.doi.org/10.1016/j.dental.2012.03.004

18. Koleske, J. V. Paint and Coating Testing Manual. American Society for Testing and Materials, Philadelphia, 1995.

19. Marzocca, A. J., Garazza, R.-L., and Mansilla, M. A. Evalua­tion of the polymer–solvent interaction para­meter χ for the system cured polybutadiene rubber and toluene. Polym. Test., 2010, 29, 119–126.
http://dx.doi.org/10.1016/j.polymertesting.2009.09.013

20. Salamone, J. C. Polymeric Materials Encyclopedia. Twelve Volume Set, CRC Press, USA, 1996.

 

Back to Issue