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Abstract
We investigate whether Swampland constraints on the low-energy dynamics of weakly coupled, moduli-
stabilised string vacua in AdS can be related to inconsistencies of their putative holographic duals or,
more generally, recast in terms of CFT data. We find that various swampland consistency constraints are
equivalent to a negativity condition on the sign of certain mixed anomalous dimensions. This condition
is similar to well-established CFT positivity bounds arising from causality and unitarity, but not known
to hold in general. The studied scenarios include LVS, KKLT, and both perturbative and racetrack
stabilisation. Interestingly, the LVS vacuum (with ∆ϕ = 8.038) also appears to live very close to a
critical value (∆ϕ = 8) where the anomalous dimensions change sign. We finally point out an intriguing
connection to the Swampland Distance Conjecture, both in its original and refined versions.
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1. INTRODUCTION
The last few years have seen a resurgence of interest in the
identification of criteria that distinguish between the low-
energy effective theories which admit an ultraviolet completion
in String Theory, or more generally within the framework of
Quantum Gravity, from those which do not. The former are
commonly referred to as the Swampland [1, 2], as opposed to
the Landscape [3] of acceptable theories (see [4] for a compre-
hensive review). The underlying idea for the emergence of such
constraints is that self-consistency conditions should become
more and more restrictive as one moves towards the UV, cul-
minating with string theory whose structure at high energies
is essentially determined.

This program has resulted in a large number of conjectures
which vary greatly in their predictive power and their degree
of rigourous support. These are often linked by a deep web
of connections. Some of them, such as the No Global Symme-
tries [5, 6] and Weak Gravity conjectures [7], have existed for
some time and have a high level of support, relying both on a
UV stringy logic and also IR arguments involving black hole
physics. On the other end of the spectrum, there are spec-
ulative hypotheses such as the dS Conjecture [8], which are
motivated by the difficulties encountered in the construction
of explicit counterexamples in String Theory and have less rig-
orous support, but carry broad phenomenological implications
[8, 9].

With a somewhat analogous philosophy, but using very dif-
ferent methods, the Bootstrap program has been working in
the direction of determining restrictions on consistent Confor-
mal Field Theories (CFTs) based only on the assumption of
certain fundamental requirements such as unitarity and cross-
ing symmetry (an introduction to the topic can be found in
[10]). This has had considerable success in carving out the pa-
rameter space of consistent CFTs through a clever combination
of numerical [11, 12] and analytical techniques [13, 14], show-
ing that certain interesting theories (such as the Ising model)
live near the boundary of the allowed regions.

The underlying theme of this paper is to explore whether
or not these two programs, so different in principle, can be

connected through the AdS/CFT correspondence. The attrac-
tiveness of such an approach is twofold. First, AdS/CFT (at
least in its strongest formulation) can be thought to apply to
generic theories of quantum gravity and therefore be more gen-
eral than arguments based on weakly coupled string theory.
Second, it may provide an alternative, possibly more funda-
mental, perspective on the swampland conjectures. The low-
energy effective Lagrangians for string compactifications often
arise after a series of several steps of dimensional reduction. By
necessity, these steps leading to N = 0 minima of the effective
potential rely on perturbative expansions and weak coupling
approximations. AdS/CFT may provide an alternative means
to test the correctness of these ideas.

A number of recent works have tried to exploit this rather
broad idea (see also the discussion in section 3.3.5 of the review
[4]). Examples include general arguments in support of the
Weak Gravity Conjecture [15, 16, 17, 18, 19, 20] and for the
absence of global symmetries in quantum gravity theories with
a holographic dual [21, 22].

Here our approach aims at analysing the properties of the
specific CFTs which would be dual to weakly coupled, effective
theories arising from string compactification scenarios. Our fo-
cus is therefore on models with N ≤ 1 supersymmetry and
potentials for moduli. Although the exploration of CFT duals
to weakly-coupled low energy theories of moduli stabilisation
has been the subject of occasional studies [23, 24, 25], the topic
remains relatively unexplored, in part due to the belief that
dual CFTs would have extremely complex properties.

However, it was found in [25] that the Large Volume Sce-
nario [26, 27], viewed holographically, admits a relatively sim-
ple and unique form for the low-lying operators and their con-
formal dimensions. This makes it a relatively well-posed ques-
tion whether Swampland-like constraints on the corresponding
low energy Lagrangians can be recast in the language of con-
formal theories.

The aim of this paper is to make these statements quanti-
tative. In this paper we focus only on AdS constructions and
do not discuss subsequent uplifts to de Sitter space – although
there are also interesting conceptual and consistency questions
associated to de Sitter constructions, the use of AdS/CFT
techniques restricts our analysis to the first step involving AdS
vacua, which in any case already have many phenomenologi-
cally interesting features.
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In general, one complication is that these Lagrangians can
contain a large number of light moduli ϕi, typically of order a
few hundred (arising from typical Calabi-Yau values for h1,1

and h2,1). In a holographic picture, each particle in the bulk
corresponds to a single trace primary operator in the CFTd of
conformal dimension ∆ given by

∆(∆− d) = m2R2
AdS . (1)

For ‘generic’ N = 1 supergravity models, VAdS ∼
−m2

3/2M
2
P ,RAdS ∼ m−1

3/2 and mϕi ∼ m3/2, translating into
a large number of operators of low conformal dimension.

For this reason we shall mostly focus on a specific case, the
Large Volume Scenario (LVS), which allows for a much sim-
pler holographic description [25]. For LVS in the large volume
limit, the only operators to retain a small O(1) conformal di-
mension ∆ are the massless graviton, the volume modulus and
its axionic partner; all other dimensions diverge and the cor-
responding fields can be integrated out. Above these, there is
a large ∆gap, not just to the higher spin states but also to the
other moduli. Furthermore, the limit of infinite V also provides
a well defined and universal limit, where all the interactions
in the effective theory are fixed and do not depend on the fine
details of the compactification.

This paper is organized as follows: after the introduction,
we first review the basic aspects of the LVS construction in sec-
tion 2 and the properties of the putative holographic dual. As
our analysis focuses on potential changes of signs in the low-
energy AdS Lagrangian we then examine positivity bounds,
both within CFTs and from the S-matrix, along with a brief re-
view of some analytic bootstrap techniques in section 3. In sec-
tion 4, we propose a Swampland criterion based on the large-`
sign of mixed anomalous dimensions in the CFT and show
that this is capable of reproducing various swampland results
including those on axion field ranges and also (in section 5)
on the refined swampland distance conjecture. We also discuss
the application of this criterion to other related scenarios of
moduli stabilisation such as KKLT, racetrack and perturba-
tive stabilisation. Finally, possible future directions and a few
unresolved questions are presented in section 6.

2. THE LARGE VOLUME SCENARIO AND
ITS HOLOGRAPHIC PROPERTIES

We start with a brief review of the Large Volume Scenario of
moduli stabilisation (LVS), focusing on properties of both the
AdS vacuum and its putative holographic dual CFT.

2.1. Introduction to LVS and Its Low Energy Dynamics
The Large Volume Scenario [26, 27] is a particular model of
IIB compactification with fluxes, where all moduli are stabi-
lized in a susy-breaking AdS vacuum at an exponentially large
value of the volume V. This is achieved through a combination
of perturbative corrections arising from the α′3R4 term and
non-perturbative effects in the superpotential. A pedagogical
account of the basic construction is given in [28]. The dila-
ton and complex structure moduli are heavy and stabilised by
fluxes. These can then be integrated out, leading to an effective
theory described by a Kähler potential K and superpotential

W of the form

K = −2 log

(
V +

ξ

g3/2
s

)
, (2)

W = W0 +
∑
i

Aie
−αiTi , (3)

which depends on the Kähler moduli Ti = τi + iai. The co-
efficient ξ of the α′3 correction is determined by the Euler
characteristic of the compactification manifold, ξ = ζ(3)χ(M)

2(2π)3 ,
while the αi in the exponential can assume the values αi = 2π

N .
In the simplest scenario (which we restrict to here), there

are only two Kähler moduli, one large cycle corresponding to
the size of the overall volume (Tb) and one small internal ‘blow-
up’ cycle (Ts). The volume is then written as

V =
1
κ

(
τ3/2
b − τ3/2

s

)
, (4)

with the constant κ depends on the specific Calabi-Yau. In-
serting this expression into (2), one can use the form of the
N = 1 supergravity potential

V = eK
(
GT T̄DTWD̄TW − 3|W |2

)
, (5)

to obtain an effective potential

V =
Aa2

s
√
τse
−2asτs

V − BW0asτse
−asτs

V2 +
CξW 2

0
g3/2
s V3

, (6)

where A, B and C are numerical constants, which is minimized
for

〈τs〉 ∼ ξ2/3

gs
,

〈V〉 ∼ easτs .
(7)

Here τs is the small, heavy modulus, while the large light mod-
ulus is associated to the overall breathing mode corresponding
to volume rescalings.

One can usefully obtain a 1-field effective potential for the
light modulus by integrating out the heavy modulus. In terms
of the canonically normalized field ϕ =

√
2
3 lnV, the resulting

potential is
V = e

− λϕ
MP

(
A′ −ϕ3/2), (8)

for a constant A′, where in LVS the coefficient λ =
√

27
2 .

This value of λ corresponds to the overall V−3 scaling of the
potential and so is fixed in LVS. There is a single minimum
located at a critical value ϕc = 〈φ〉 of the field satisfying

3
2λϕ

3
2
c −ϕ

1
2
c = λA′. (9)

This corresponds to V � 1 since ϕ is logarithmic in the volume
and A′ takes typical O(1− 10) values. It is worth emphasising
that as lnV ∼ 1

gs
, and there is a large discretuum of flux

choices to fix gs to small values, in practice 〈V〉 can be made
as large as one wishes and is effectively a free parameter. The
corresponding vacuum realizes an AdS solution and one can
verify that

V ′′(ϕc) = −λ2Vmin

(
1− 1

2λϕc

)
. (10)

2



Letters in High Energy Physics LHEP-171, 2020

Using Vmin ≡ − 3M2
P

R2
AdS

, this can be rewritten [25]

V ′′(ϕc) =
3λ2

R2
AdS

(
1 +O(lnV−1)

)
. (11)

From a holographic perspective, this equation (combined with
Eq. (1)) carries a striking implication: the conformal dimen-
sion of the volume modulus is fixed in the infinite volume limit,
approaching in the V → ∞ limit a universal value (with sub-
leading corrections in (lnV)−1

∆ϕ =
3
(

1 +
√

1 + 4
3λ

2
)

2 . (12)

Moreover, a similar phenomenon holds for the interaction
terms; repeated differentiations of Eq. (8) give

V (n)(ϕ) = (−λ)n
3M2

P

R2
AdS

n− 1
n!

(
ϕ

MP

)n(
1 +O

( 1
λϕc

))
, (13)

whose form is now independent of specific details of the UV
theory (such as W0, the details of the Calabi-Yau or the choice
of fluxes). The volume axion has a shift symmetry and so its
potential vanishes, leaving it massless, with the only interac-
tions arising from its kinetic term

Laaϕn−2 =

(
−
√

8
3

)n−2
1

2(n− 2)!

(
ϕ

MP

)n
. (14)

Furthermore, the structure of Eqs. (13) and (14) is radiatively
stable, since quantum corrections give sub-leading effects in
the large volume expansion [25] and so leave the basic form of
the potential of Eq. (8) unaltered.

2.2. CFT Interpretation
Given the uniqueness of the spectrum and interactions of low
conformal dimension operators in the infinite volume limit, it
is natural to view the low-dimension sector of LVS vacua as
a small perturbation about this unique theory, which thus ac-
quires a special status. In particular, the low dimensional sec-
tor of the putative CFT dual is characterized by a sparse spec-
trum, as the only single trace operators which retain a finite
conformal dimension in the large volume limit are (as above)
the volume modulus and its axion, plus the stress energy ten-
sor. Crucially, the dimensions of the other moduli diverge as V
is taken to infinity, as shown in Table 1. Therefore, this sector
of the theory is fully specified by the conformal dimensions of
Table 2 and the interactions of (13) - (14). The latter can
then be recast into O( 1

N2 ) CFT data (OPE coeffiecients and
anomalous dimensions) through the AdS/CFT correspondence
by computing correlation functions.

From a holographic perspective, the appeal of LVS lies pre-
cisely in the fact that such computations become tractable due
to the small number of states propagating inside Witten dia-
grams. It therefore represents both a serious scenario of moduli
stabilisation and also an ideal playground to study the ques-
tions outlined in the introduction, namely whether Swampland
constraints in AdS can be rephrased or understood in terms of
the corresponding CFT.

Mode Mass ∆
τs

MP lnV
V V

1
2 lnV

T ,U MP
V V

1
2

ψ3/2
MPW0
V V

1
2

Table 1: Large V asymptotics of the masses and conformal di-
mensions for the single trace operators dual to the other mod-
uli in the minimal realization of LVS, specifically the complex
structure moduli, the small Kähler modulus and the gravitino.
A similar decoupling occurs for other modes like brane moduli.
The KK and string modes are even heavier with ∆KK ∼ V5/6

and ∆string ∼ V, while black hole states start occurring at
∆BH ∼ V3/2.

Operator Spin Parity ∆
a 0 − 3
ϕ 0 + 3

2 (1 +
√

19)
Tµν 2 + 2

Table 2: Low dimensional single-trace operators in the spec-
trum of the CFT dual to LVS in the V → ∞ limit. Table taken
from [25].

2.3. Connection to the Swampland
The first observation is that some alterations of Eqs. (13) - (14)
are clearly inconsistent from a stringy point of view, even if
they may not appear fatal within the effective theory. Perhaps
the simplest such class of modifications comprises changes in
the structure of the axion kinetic term, modifying the large
volume behaviour of the axion decay constant. With the orig-
inal kinetic term

L ⊃ e−
√

8
3

ϕ
MP ∂µa∂

µa, (15)

the axion decay constant scales as fa ∼MPV−
2
3 and vanishes

in the V → ∞ limit. However, were fa to instead remain con-
stant or even diverge, this would be in stark contrast with the
evidence for sub-Planckian decay constants within quantum
gravity as well as known behaviour in string theory. Indeed,
explicit examples in String Theory show control issues system-
atically occurring when fa � MP - a fact we will refer to as
the no transPlanckian axion decay constant conjecture (e.g see
[29, 30, 31, 32]).

For example, according to the axionic version of the Weak
Gravity Conjecture [7], fa should satisfy the inequality

faS .MP , (16)

where S is the action of the leading instanton depending on
the axion and S is required to be smaller than one in order
for the single instanton approximation to be valid. Here, the
action of a bulk D3-instanton is S ∼ V2/3 and so Eq. (16)
would be violated by fa ∼MP .

This inconsistent behaviour can, for example, be achieved
by switching the sign of the exponential in Eq. (15) – cor-
responding to fa ∼ MPV

2
3 – or by including only a finite

number of terms in its expansion. Such statements can now
be translated into statements on the structure of the EFT La-
grangian; the above sign inversion, for instance, corresponds
to an additional factor of (−1)n in Eq.(14). More generally,
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when expanding about any vacuum the sign of the linear cou-
pling ϕ

MP
∂µa∂

µa is clearly equivalent to the sign of ∂fa(ϕ)
∂ϕ ,

so any requirement that ∂fa
∂ϕ < 0 in the asymptotic regime is

equivalent to a negative sign for the latter coupling as well.
As another example, one might wonder whether potentials

resembling LVS – but with a generic λ – can be realized in
string compactifications. One reason to suppose this is not
possible is that, if λ ≤

√
6, the dependence on the volume is

such that the potential grows parametrically faster than the
string scale M4

s , so V /M4
s → ∞ as V → ∞ – a behaviour

that looks problematic in a limit of weak coupling and large
volumes. A value of λ =

√
6 corresponds to

V ∝
M4
P

V2 ∼M
4
S (17)

since MS ∼ MP√
V

.
In the other direction, for the case of λ� 1 the leading con-

tribution to the potential would scale with a very high power of
the volume. This also appears unstable against quantum loop
corrections which would be expected to re-introduce a scaling
with a lower power of the volume [33, 34]. One may therefore
hope that all values of λ outside a finite interval should lie in
the Swampland, or even adopt the extreme point of view that
only λ =

√
27
2 is allowed.

The above arguments then provide a motivation for a holo-
graphic approach. Within this holographic approach, there are
two basic questions to be asked:

• Can one turn swampland constraints on the AdS La-
grangian into well-defined statements about CFT prop-
erties?

• Do swampland modifications to the AdS side clearly
translate into violations of fundamental properties of the
putative CFT dual?

Anticipating subsequent results, we can say that, although
the first question seems to admit a positive response, the sec-
ond question seems harder to answer. In particular, we will
show how the above Swampland conditions translate into a
statement on CFT anomalous dimensions which is surprisingly
similar to known causality and unitarity constraints, but is
nonetheless not known to be valid in general.

3. HOLOGRAPHIC CFTS AND CONSIS-
TENCY CONDITIONS

We now turn to a general discussion of holographic CFTs, and
the form of constraints on them that can exist, before returning
to applications to LVS.

3.1. Holographic CFTs
According to the AdS/CFT correspondence, correlation func-
tions in a conformal field theory can be calculated on the
gravity side by evaluating boundary correlators involving the
corresponding fields in AdS. If the gravity dual is weakly
coupled, such computations can be carried out explicitly in
perturbation theory, and the CFT is said to be holographic.
From the point of view of string theory, this is the case when
RAdS � `S and gs � 1, so quantum corrections (both in

spacetime and on the worldsheet) can be neglected. According
to the AdS/CFT dictionary the ’t Hooft coupling λ = g2N
is mapped to λ ∼ (R/`S)d and so must be much larger than
one in this limit, implying that holographic CFTs are always
characterized by N � 1, or an equivalent expansion parameter
when the theory does not admit an explicit large-N descrip-
tion. With a slight abuse of notation (which conforms to what
has become standard use in the literature), we shall always
denote this expansion parameter as 1/N , and operators will
be referred to as single or double trace according to the scal-
ing of their two-point function with N . In the LVS minimum,
RAdS ∼ V3/2, and so the stabilised volume plays the role of
the large N parameter.

A second peculiarity of holographic CFTs is that they are
characterized by a large gap in the spectrum of conformal di-
mensions, which are related to the AdS mass through the for-
mula

∆(∆− d) = m2R2
AdS (18)

already cited in the introduction. In holographic CFTs there
is a large ∆Gap � 1 between the low-lying scalar, vector and
graviton modes to higher-spin operators. For example, all the
heavy stringy modes have m ∼ 1/`S � 1/RAdS and corre-
spond to fields with large conformal dimensions in the weak
coupling regime.

It is interesting to note that the converse of this statement
has been conjectured to hold, i.e. that all large-N CFTs with
a gap should be characterized by a weakly coupled, local bulk
dual. In [35], this was proven at order 1/N2 through a bijective
mapping of solutions to the Bootstrap crossing equations to
bulk interaction vertices for scalars. Incidentally, this shows
that the requirement of crossing symmetry alone is not enough
to constrain the form of the low energy Lagrangians mentioned
at the beginning.

From a practical point of view, the spectrum of holographic
CFTs at the first non-trivial order in 1/N2 includes a finite
number of single-trace primaries O1,O2, . . .Om plus double-
trace (and higher-trace) operators, which are built from any
two (or more) of the Oi. For scalars, the double-trace operators
are schematically of the form

Oi2n∂µ1 ...∂µ`Oj , (19)

and there is a single double-trace primary for each value of n
and `, denoted as [OiOj ]n,`. Their conformal dimension can
be written as

∆n,` = ∆i + ∆j + 2n+ `+ γ(n, `), (20)

where the classical contribution ∆i + ∆j + 2n + ` can be
split from the smaller anomalous dimension γ(n, `) that is
O(1/N2). From an AdS perspective, the double trace oper-
ator corresponds to a 2-particle state in AdS and the anoma-
lous dimension corresponds to its binding energy. Of course, in
a full-fledged CFT scalars are not the whole story, and there
will also be the stress energy tensor plus the operators built
by combining the stress tensor with other primaries.

3.2. The Bootstrap
The bootstrap program, originally dating to the early 1970s
[36, 37, 38], rests on the philosophy that conformal symmetry
alone is powerful and restrictive enough to impose significant
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constraints on the space of allowed theories, allowing interest-
ing results to be derived with little external input other than
the CFT axioms. On the technical side, a fundamental prop-
erty is the existence of a convergent OPE expansion

O1(x1)O2(x2) =
∑

k primary

fk12C(x12, ∂12)Ok(x2), (21)

where the operator C(x, ∂) is fully determined by conformal
symmetry, and f12k is the only arbitrary coefficient appearing
in the 〈O1O2Ok〉 three-point function, namely

〈O1(x1)O2(x2)Ok(x3)〉 =

=
f12k

|x12|∆1+∆2−∆k |x23|∆k+∆2−∆1 |x13|∆1+∆k−∆2
.

(22)

When inserted inside a 4-point correlator, this generates
an expansion in a universal basis of functions, the conformal
blocks. For identical operators,

〈O(x1)O(x2)O(x3)O(x4)〉 =

=
1 +
∑

∆,`
(
f∆,`
OO
)2
G∆,`(u, v)

|x12|2∆1 |x34|2∆3
≡ 1 +A(u, v)
|x12|2∆1 |x34|2∆3

,

(23)

where u and v the conformal cross ratios, defined as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (24)

Although they are completely fixed by conformal invariance,
the explicit form of the conformal blocks is only known in even
dimension, where they satisfy a separable differential equation.

Thus, all the dynamical information about the CFT is con-
tained in the spectrum of the theory, given by the pairings
∆i, `i, and the OPE coefficients fk12. In particular, with a 4-
point function one can perform the contraction (21) in two
inequivalent ways, to obtain the celebrated Bootstrap equa-
tion∑

∆,`

(
f∆,`
OO
)2(v∆φG∆,`(u, v)− u∆φG∆,`(v,u)

u∆φ − v∆φ

)
= 1. (25)

In principle, with a holographic CFT it is possible to cal-
culate any correlator with Witten diagrams in AdS, and then
expand into conformal blocks to recover OPE coefficients and
anomalous dimensions. However, this is hardly ever achievable
in practice – computations are extremely long even for the
simplest of diagrams and 3d conformal block are not known
in a closed form. Furthermore, the full correlators often con-
tain much more information than is needed, and one is left
wondering whether it would be possible to skip some of the
intermediate steps.

For this reason, bootstrap techniques often yield powerful
insights, both in terms of uncovering general properties and
also performing specific calculations. In a variety of examples,
the crossing equation (25) was used to recover the leading order
OPE data in large-N theories, corresponding to both contact
[35] and exchange [39] diagrams in AdS. In this context, a
general formula for the special case n = 0 was worked out
in [40] with the Mellin amplitude formalism, to be introduced
below. This will be discussed extensively in section 3.3.1, and
will form the basis of our analysis.

3.3. Mellin Amplitudes
The S-matrix does not exist in AdS as any definition of physi-
cal asymptotic states is troublesome; the only real observables
are correlators or functions thereof. Heuristically, this arises
because AdS behaves like a system of “particles in a box”,
where interactions between different constituents cannot be
switched off and there are no ‘states at infinity’.

However, there does exist a representation of AdS correla-
tors which exhibits striking similarities to flat space scattering
amplitudes, and can be used to derive the latter in certain
limits where the radius of AdS goes to infinity. These are the
Mellin amplitudes.

Starting from an n-point correlator, the Mellin transform
is defined as

A (xi) ⊃〈O1 (x1) ... . . .On (x4)〉c =

=
∏

1≤i<j≤n

∫ +i∞

−i∞

dδij
2πi M(δij)Γ (δij)

(
x2
ij

)−δij ,

(26)

with the quantity M(δij) known as the Mellin amplitude [41,
42, 43]. In Eq. (26) the integrations should be carried out in
such a way that the poles arising from the Mellin amplitude
or a given gamma function all be placed on one side of the
contour. Defining δii = −∆i, one can show that conformal
invariance implies ∑

i

δij = 0. (27)

After imposing these constraints, there are n(n− 3)/2 inde-
pendent variables δij for an n-point function, which is the
same as the number of kinematic invariants for an n-particle
amplitude.1 It is then possible to introduce fictitious variables
pi that satisfy

pi · pj = δij ,
n∑
i=1

pi = 0, (28)

representing the analogue of momentum conservation for con-
formal correlators. For 4-point correlators, it is then natural
to use Mandelstam-like variables2

s = −(p1 + p2)
2 = ∆1 + ∆2 − 2δ12,

u = −(p1 + p4)
2 = ∆1 + ∆4 − 2δ14,

t = −(p1 + p3)
2 − ∆1 − ∆4 = ∆3 − ∆4 − 2δ13,

(29)

which obey the relation

s+ t+ u = ∆2 + ∆3. (30)

For a 4-point function, the reduced amplitude A(u, v) is de-
fined as

A (xi) =
1(

x2
12
) ∆1+∆2

2
(
x2

34
) ∆3+∆4

2

×

(
x2

24
x2

14

) ∆1−∆2
2
(
x2

14
x2

13

) ∆3−∆4
2

A(u, v),

(31)

1In both cases, this counting is modified for n > d+ 2.
2Here the definition of t has a constant shift with respect to the

canonical one only to simplify some formulas involving Mack polynomi-
als.
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and it can be expressed as a function of the Mellin amplitude

A(u, v) =
∫ i∞

−i∞

dtds

(4πi)2M(s, t)us/2v−(s+t)/2×

Γ
(∆1 + ∆2 − s

2

)
Γ
(∆3 + ∆4 − s

2

)
Γ
(∆34 − t

2

)
×

Γ
(−∆12 − t

2

)
Γ
(
t+ s

2

)
Γ
(
t+ s+ ∆12 − ∆34

2

)
.

(32)
Further evidence for the analogy comes from the explicit

computation of Mellin amplitudes, at least in the simple cases
where it is possible to do so. For a scalar contact interaction
between n different fields

Lint = gϕ1ϕ2...ϕn, (33)

the Mellin amplitude is a constant,

M(δij) =
gπ

d
2

2 Γ
(∑∆i − d

2

) n∏
i=1

1
Γ(∆i)

. (34)

If derivatives are added to the vertex, as in

Lint = g∇...∇ϕ1∇...∇ϕ2...∇...∇ϕn, (35)

then the Mellin amplitude picks up powers of the fictional
momenta corresponding to the number of derivatives acting
on the field [44]

M(δij) =
gπ

d
2

2 Γ
(∑∆i − d+ 2N

2

)
×

n∏
i=1

1
Γ(∆i + βi)

n∏
i<j

(−2δij)αij + ...,
(36)

where αij is the number of derivatives acting on ϕi and ϕj ,
βi =

∑
j 6=i αij and 2N is the total number of derivatives.

Going one step further, a diagram describing the exchange of
a bulk scalar dual to a single trace operator O of dimension
∆O and spin `O, say in s-channel, has the form [45]

M(s, t) = f12OfO34
∑
m

Q`O,m(t)

s− ∆O + `O − 2m , (37)

where the Q`O,m(s, t), known as Mack Polynomials, are com-
pletely determined by conformal symmetry. Introducing the
Pochhammer symbol

(a)m =
Γ(a+m)

Γ(a)
= a(a+ 1)...(a+m− 1), (38)

their explicit form can be conveniently parametrized by the
new polynomials QJ,m(s) satisfying [46]

QJ,m(s) =

− 2Γ(∆ + J)(∆− 1)J
4JΓ

(∆+J+∆12
2

)
Γ
(∆+J−∆12

2
)

Γ
(∆+J+∆34

2
)

Γ
(∆+J−∆34

2
)

QJ,m(s)

m!(∆− h+ 1)mΓ
(∆1+∆2−∆+J

2 −m
)

Γ
(∆3+∆4−∆+J

2 −m
) .

(39)

Imposing the normalization QJ,m(s) = sJ +O(sJ−1), these
are given by

QJ,0(s) =
2J
(∆12+τ

2
)
J

(∆34+τ
2
)
J

(τ + J − 1)J

3F2

(
−J , J + τ − 1, ∆34 − s

2 ; τ + ∆12
2 , τ + ∆34

2 ; 1
)

.
(40)

The appearance of poles in the Mandelstam-like variables
corresponding to the exchange of operators of different spin is
reminiscent of flat space scattering amplitudes. Quite remark-
ably, this is not only a feature of weakly coupled gravity duals,
but instead a generic property valid for all conformal theories.
Indeed, given the OPE expansion

O1 (x1)O1 (x2) =

=
∑
k

f12k
(
x2

12
) ∆k−∆1−∆2

2
[
Ok (x2) + cx2

12∂
2Ok (x2) + . . .

]
,

(41)

in the OPE limit x2
12 → 0 one can perform the integral over

δ12 by summing over the corresponding poles, denoted by a
tilde.
〈O1 (x1)O1 (x2) . . .〉 =

=
∑
δ̃12

(
x2

12
)−δ̃12

∏
1<i<j,

2<j

∫
dδij
2πi Resδ̃12

M (δij) Γ (δij)
(
x2
ij

)−δij ,

(42)

Matching terms in an expansion in inverse powers of x2
12 it is

then possible to recover poles at

s = ∆O + 2m, m = 1, 2 . . . , (43)

with a residual that is proportional to f12O. A careful deriva-
tion of factorization formulas for Mellin amplitudes can be
found in [47].

3.3.1. Applications: A Formula for γ(0, `)
As an application of this formalism, we now derive a tree-
level formula to compute the γ(0, `) anomalous dimensions of a
holographic CFT in terms of the associated Mellin amplitude,
used for the first time in [40] for the study of gravitational
exchange diagrams.

Given two single trace primaries O1,O3 of dimensions ∆1
and ∆3, the anomalous dimensions of the double trace opera-
tors [O1O3]0,` are given by

γ(0, `) = −
∫ +i∞

−i∞

ds

2πiM(s, 0) Γ
(

∆1 −
s

2

)
Γ
(

∆3 −
s

2

)
Γ
(
s

2

)2
×

3F2(−`, ∆1 + ∆3 + `− 1, s2 ; ∆1, ∆3; 1),
(44)

where M(s, t) is the Mellin amplitude corresponding to the
correlator

〈O1(x1)O1(x2)O3(x3)O3(x4)〉. (45)
This expression only includes the analytic contribution in the
spin arising from exchange diagrams, and is not sensitive to
the presence of contact terms.3

3See 4.2.2.
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To prove it, we compare the conformal block decompo-
sition of the correlator with an appropriate expansion of the
Mellin amplitude. As the double trace operators above are only
contained in the OPE of O1 with O3, the conformal block de-
composition contains γ(0, `) at order 1

N2 only in the mixed
channels. If we denote by A′(u, v) the stripped correlator as-
sociated to 〈O3(x1)O1(x2)O1(x3)O3(x4)〉, then

A(u, v)v
∆1+∆3

2 = A′(v,u)u2∆1 , (46)

and we can decompose A′(v,u) in s-channel conformal blocks.

A(u, v) ⊃
(
u

v

) ∆1+∆3
2

u
∆1−∆3

2 ×∑
∆,`

(
f1,3
[13]0,`

)2
G(v,u)∆31,∆13

∆1+∆3+2n+`+ γ(n,`)
N2 ,`

(47)

where the f1,3
[13]0,`

are OPE coefficients of [O1O3]0,` with O1

and O3. To isolate the contribution of γ(0, `),

G(v,u)∆31,∆13

∆1+∆3+2n+`+ γ(n,`)
N2 ,`

=

= G(v,u)∆31,∆13
∆1+∆3+2n+`,` +

γ(n, `)
N2 ∂∆G

∆31,∆13
∆1+∆3+2n+`,`.

(48)

Since conformal blocks can always be expanded as

G
{∆i}
∆,` (u, v) = u

∆−`
2

∞∑
m=0

g∆,`
{∆i},m(v)um, (49)

the derivatives translate into the appearance of logarithms
which, by analyticity of the conformal blocks, cannot be gener-
ated anywhere else in the sum. Therefore, the only log-singular
term multiplying the lowest power of u is

A(u, v) ⊃ u∆1 log(v)
2

∑
`

γ(0, `)
(
f1,3
[13]0,`

)2
g∆,`
{∆i},0(u). (50)

At this point it is convenient to introduce an integral represen-
tation [46] for g0, in terms of the modified Mack polynomials
defined in (40):

g∆,`
{∆i},0(u) = α(∆i, `)u−∆1

∫ +i∞

−i∞

ds

8πiu
− s2×

QJ,0(s− ∆1 + ∆3)Γ
(
− s

2
)2

Γ
(

∆1 +
s

2
)

Γ
(

∆3 +
s

2

)
.

(51)

Inserting this last equation into (50) results in an expression
that is highly reminiscent of Mellin amplitudes, to which we
now turn our attention.

In fact, the same quantity can be rewritten as

A(u, v) =
∫ i∞

−i∞

dtds

(4πi)2M(s, t)us/2vt/2×

Γ
(

∆1 −
s

2
)

Γ
(

∆3 −
s

2
)

Γ
(s+ t

2
)2

Γ
(
− t

2
)2,

(52)

where we have used the reflection property M(s, t) =
M(s,−s− t) 4 to switch integration variables with respect to
(32). Since the OPE limit in the crossed channel corresponds
to v → 0, one can integrate with respect to t by closing the
contour on the right-hand plane. On the positive axis, there
are double poles located at integer values of t = 2n. Using

Res
(

Γ
(
− t

2
)2
f(t)

)
t=2n

=
4

(n!)2
f ′(2n) + 2(−1)nCn

n!
f(2n),

(53)
where the form of the coefficients Cn is irrelevant for our pur-
poses. We can then isolate the logarithmic contribution

A(u, v) = log v
2

∞∑
n=0

vn

(n!)2

∫ +i∞

−i∞

ds

2πiM(s, 2n)×

us/2Γ
(

∆1 −
s

2
)

Γ
(

∆3 −
s

2
)

Γ
(
s+ 2n

2

)2
.

(54)

Since the integrals in (50) and (54) are equal for any value
of u, we can equate the integrands5 to obtain
∞∑
`=0

γ(0, `)
(
f1,3
[13]0,`

)2
Q`,0(−s+∆1−∆3)α(∆i, `) = −4M(s, 0).

(55)
Incidentally, in the case of a polynomial amplitude (dual to
contact vertices on AdS) Eq. (55) becomes a finite dimensional
linear system for the γ(0, `), correctly reproducing some results
contained in [35] (and not captured by (44)). Finally, it is
possible to isolate the individual γ(0, `) through a projection
on the corresponding Mack polynomials, by integrating (55)
with respect to the measure in (54). This is because they satisfy
the orthogonality relation [46]∫ i∞

−i∞

ds

4πiQJ,0(s)QJ′,0(s)Γ
(∆34 − s

2

)
Γ
(−∆12 − s

2

)
×

Γ
(
τ + s

2

)
Γ
(
τ + s+ ∆12 − ∆34

2

)
=

=δJ,J′
(−4)JΓ

(
∆1 + J

)2
Γ
(

∆3 + J
)2
J !

Γ(∆1 + ∆3 + 2J)(∆1 + ∆3 + J − 1)J
,

(56)
with the choice of normalization in (40) The result then follows
from the generalized free theory coefficients in [48](

f1,3
[13]0,J

)2
=

(−1)J (∆1)J (∆3)J
(∆1 + ∆3 + J − 1)JJ !

(57)

and the normalization factor

α(∆i, J) =
2Γ(∆1 + ∆3 + 2J)(∆1 + ∆3 + J − 1)J

4JΓ
(

∆1 + J
)2

Γ
(

∆3 + J
)2 . (58)

3.4. Positivity Bounds
In the last section, we saw that sign changes in the effective
field theory Lagrangians of string vacua are able to move a
theory in or out of the swampland. This is reminiscent of posi-
tivity bounds in QFTs deriving from unitarity and analyticity.
For our purposes, we will mostly be concerned with two spe-
cific realization of this idea:

4A consequence of 1↔ 2/3↔ 4 symmetry.
5Up to terms which are not compatible with the structure of a Mellin

amplitude M(s, 0) in a large-N theory with a weakly coupled dual.

7



Letters in High Energy Physics LHEP-171, 2020

• S-Matrix positivity bounds, derived for the first time in
[49]. These crucially rely on the assumption of analyt-
icity6 in the kinematic variables, an idea that is closely
related to causality.

• Constraints on the sign of the anomalous dimensions in
Lorentzian CFTs, such as those derived in [13, 50, 51].

These results often trace back to an application of the optical
theorem, which relates a generic amplitude to an integral over
intermediate states. In its most general form, it can be stated
as [52]

A(i→ f)−A∗(f → i) = (59)

(2π)4δ(4)(
∑
j∈I

pj − PX )
∑
X

∫
dΠXA(i→ X)A∗(X → f).

(60)

In the case of elastic scattering (i.e when the inital and final
states coincide), the LHS of (59) reduces to the imaginary part
of the amplitude, while the RHS becomes manifestly positive:
it is this sign that acts as a source for the positivity bounds. If
one further specializes to two particle states, the RHS becomes
the total cross section for the process under consideration.

3.4.1. Positivity in CFTs
In Conformal Field Theories, the idea of scattering is ill-
defined, and so it is not straightforward to make contact with
the usual implications of unitarity stemming from the Optical
Theorem. However, an ingenious way to circumvent the prob-
lem (first devised in [13, 14]) is to modify a CFT by a relevant
perturbation that causes it to flow to a gapped phase in the in-
frared. In particular, the authors considered elastic scattering
between the lowest-mass state in the theory, which now has
a mass gap, and an arbitrary external operator O through a
space-like virtual exchange. This procedure is in close analogy
with Deep Inelastic Scattering (DIS) processes used to study
the structure of hadrons, by bombarding them with energetic
light leptons, and can thus be referred to as a DIS gedanken
experiment.

With the additional assumption of polynomial bounded-
ness on off-shell amplitudes7 and exploiting the positivity of
the total cross section, it was shown in [13] that the minimal
twist operators appearing in the OPE of O with its adjoint
have to obey the convexity property

τ∗(`3)− τ∗(`1)
`3 − `1

≤ τ∗(`2)− τ∗(`1)
`2 − `1

. (61)

Here the twist of an operator is defined as τ = ∆− `, and the
relevance lies in the fact that the Lorentzian OPE is dominated
in the OPE limit by low twist operators. More precisely, the
τ∗(`) in (61) is the twist of the lowest dimension operator of
spin ` appearing in the OPE of a given O with itself, and as
such is called a minimal twist operator. This property holds
only if ` is higher than a certain critical spin ` ≥ `c, which is
determined by the leading exponent in the (polynomial) high
energy limit of some amplitude, and is therefore not calculable

6excluding branch cuts on the real axis and isolated singularities, as
is usual in physics.

7Which is not guaranteed by the Froissart bound.

a priori within this approach. However, in [53], the authors
used the Lorentzian OPE inversion formula of [54] to extend
these relations for any continuous value of the spin ` > 1,
without having to resort to any of the assumptions cited above.

The lower bound is in accordance with practical examples,
where the theorem is found to hold for `c ≥ 2, and usually
satisfied by the stress energy tensor – which has the lowest
twist possibly allowed by unitarity, τ = d− 2. More generally,
the minimal twist operators that saturate the bounds for an
arbitrary spin ` are appropriate combinations involving stress
energy tensors. A notable exception is when gravitational in-
teractions are very suppressed with respect to other couplings
in the theory – for example if the AdS dual contains inter-
actions suppressed by a scale Λ � MP and gravity can be
integrated out. In a holographic CFT of this kind, one can
turn (61) into

γ(0, `3)− γ(0, `1)
`3 − `1

≤ γ(0, `2)− γ(0, `1)
`2 − `1

, (62)

where γ(n, `) is the anomalous dimension of the double trace
operators made out of the lowest dimension scalar in the the-
ory. An immediate consequence of the convexity of Eq. (62) is
that, at least asymptotically, the above anomalous dimensions
must be negative. In the context of QCD similar negativity
properties are a well-known fact, going by the name of the
Nachtmann theorem [55].

Recently, a generalization of (61) was proven in [51], al-
lowing one to make statements of OPEs involving different
operators. If we denote by τ∗ij(`) the minimal twist contained
in the OPE of Oi with Oj , the following inequalities have to
be satisfied, for even spins `e ≥ 2 and odd spins `o ≥ 3 respec-
tively:

τ∗12(`e) ≥
1
2

(
τ∗11(`e) + τ∗22(`e)

)
(63)

τ∗12(`o) ≥
1
2

(
τ∗11(`o + 1) + τ∗22(`o + 1)

2

+
τ∗11(`o − 1) + τ∗22(`o − 1)

2

) (64)

Although this seems to point in the direction of what we aim to
establish, these bounds are automatically satisfied at leading
order in 1/`, for all choices of OPE coefficients and anomalous
dimensions.

Finally, similar results were proven in a totally different
context[50] using causality bulk techniques, by examining the
two point function of an arbitrary operator O over a shock-
wave background. There, the author argues that in the limit
where the stress energy tensor is decoupled

γ(0, 2) < 0 for O∂µ∂νO. (65)

From a holographic point of view, this implies that a theory
in AdS with the scalar Lagrangian

S =

∫
d4x
√
−g
[
(∂µϕ)

2 + µ(∂µϕ)
4] (66)

is only consistent if � > 0. This is the AdS generalization of
a well-known result in flat spacetime [49] derived using the
analyticity and causality structure of scattering amplitudes.
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3.4.2. Causality and Analyticity of Scattering Amplitudes
As mentioned above, another form of sign constraint on EFTs
comes from the study of consistency conditions on Effective
Field Theories in Minkowski space arising from the combina-
tion of causality and S-matrix analiticity. Starting from [49], it
was shown that apparently healthy low energy theories cannot
be UV completed into local quantum field theory or perturba-
tive string theory if the signs of certain irrelevant operators are
chosen appropriately. For simplicity, we only examine results
for scalars, although there exist generalizations for non-trivial
spins as well.

The simplest example is the theory of a shift symmetric,
massless scalar π, which exemplifies the prototypical Nambu-
Goldstone boson. The effective Lagrangian describing its self-
interactions has the form

L = (∂π)2 + a
(∂π)2�π

Λ3 + c
(∂π)4

Λ4 + . . . (67)

where the coefficients of each term are naively unconstrained.8
Then, assuming the theory admits an expansion in a weak cou-
pling g, it can be shown that the forward scattering amplitude
M(s) =M(s, t→ 0) admits a positive expansion, i.e. can be
expanded in powers of s as

Atree (s) = g

∞∑
n=1

cn

(
s2

Λ4

)n
, (68)

in such a way that the coefficients always satisfy cn > 0. This
conclusion can be reached order by order by evaluating the
complex contour integrals

In =

∮
γ

ds

2πi
M(s)

s2n+1 (69)

along an infinite semi-circle lying on the axis, exploiting the
analiticity of M(s). At this order in the coupling there can
be no cuts in the amplitude, and all the poles give a positive
contribution due to the Optical Theorem. To finish the argu-
ment, the Froissart bound M(s) < s ln2 s is used to kill the
contribution at infinity for n ≥ 1.

From an IR perspective, these bounds can also be under-
stood to be closely connected with causality, since the wrong
signs would yield faster than light propagations of fluctua-
tions in the field over non trivial backgrounds. This last aspect
is best illustrated through a simple application: according to
(68), a Lagrangian of the form

L = (∂π)2 + µ
(∂π)4

Λ4 (70)

requires µ > 0, exactly as in Eq. (66). If one quantizes over a
non-zero background ∂µπ = Cµ, with C2 � Λ4, the linearised
equations of motion imply the following dispersion relation for
small excitations:

k2 − 4µ (C · k)
2

Λ4 = 0, (71)

which clearly admits super-luminal modes for a negative µ.

8Although in specific cases their magnitude might be estimated, for
example using Naive Dimensional Analysis (NDA).

As a last remark, let us mention that there is one caveat
to (68), which amounts to the requirement that Λ � MP .
The reason is that if gravity is not weak enough (compared to
the irrelevant operators) to be integrated out, any scattering
amplitude will receive the universal contribution coming from
tree level t-channel exchange

M(s, t) ∝ GN
s2

t
(72)

which diverges in the forward limit, invalidating the above
discussion. From the point of view of causality, this happens
because gravity bends all trajectories inside the lightcone [49].

4. STRING COMPACTIFICATIONS AND
HOLOGRAPHY

4.1. General Considerations
In this section we are concerned with relating swampland mod-
ifications on LVS and other low energy string compactification
Lagrangians to constraints on QFTs and CFTs. A first crucial
point to appreciate is that the established bounds do not di-
rectly lead to constraints for any of the stringy models under
consideration.

From the perspective of the dual CFT, some difficulties
arise when the bounds (61) are applied in presence of gravity.
One reason is that, as has already been mentioned, the ac-
tual minimal twist operators constrained by causality involve
combinations of stress energy tensors, and not of the scalars.
Secondly, the behaviour of the anomalous dimensions for large
spin, i.e. where computations are most easily carried out, is
dominated by graviton exchanges, saturating the ` exponent
of the leading order term. If scalar couplings were all paramet-
rically stronger than gravity, then it may be possible to neglect
the gravitational exchanges. However, since moduli typically
couple with gravitational-like strength it is not clear that it
would be consistent to attempt to neglect dynamical gravity.

In the case of double trace operators built out of identical
fields,9 negativity of the large-` anomalous dimension is au-
tomatically satisfied and so does not lead to constraints: the
sign is always determined by the product of the couplings,
which are identical when the external legs are the same: hence
γ(n, `) ∝ −g2. On the other hand, the constraints for different
fields are always satisfied at large `.

A further limitation is that contact diagrams only give rise
to tree-level anomalous dimensions up to a finite value of the
spin, while exchanges contribute for any value of `. In particu-
lar, a 4-point interaction with 2j derivatives only contributes
to anomalous dimensions γ(n, `) with n ≤ j because of angu-
lar momentum conservation [35, 56]. For exchange diagrams,
the precise statement is that a 4-point Witten diagram, say in
s-channel, contains an infinite number of spins when decom-
posed in conformal blocks in the t and u channels [57].10 As
the contact operators in the LVS Lagrangian have `c ≤ 1 and
bounds on anomalous dimensions are only valid for `c ≥ 2,
positivity constraints do not apply directly to such operators.

9[OϕOϕ]n,` and [OaOa]n,` in the case at hand.
10Notice that here the same terminology (s,t and u) is used for two

conceptually distinct concepts; the former usage refers to the form of
the diagram, while the latter to the different OPE contractions used to
expand the correlator.
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It is interesting to notice that similar difficulties would ap-
pear if one tried to use the analyticity bounds to constrain the
same coefficients for LVS in flat space-time, in the limit where
RAdS is sent to infinity. In that case, only interactions with
at least four derivatives are constrained since the bounds on
the amplitude start at order s2. Moreover, as observed in the
previous section, the inclusion of dynamical gravity presents
some obstructions to the use of these bounds.

4.2. Holographic Analysis for LVS and Other Scenarios
Having laid out these caveats, we now want to determine some
basic properties of LVS and other moduli stabilisation scenar-
ios when viewed from a holographic perspective.

4.2.1. Three Point Functions
One fundamental computation, which will prove useful later,
is that of the three point functions of the single trace scalars.
As mentioned in section 3, these are fully constrained by con-
formal symmetry up to one coefficient fkij . To include all of our
successive examples, we consider a generic theory containing a
modulus and an axion, whose interactions can be parametrized
up to cubic order as

L ⊃ g

MPR
2
AdS

ϕ3 − µ

MP
ϕ∂µa∂

µa+
κ

MPR
2
AdS

ϕa2. (73)

The last coupling involving ϕa2 is absent in the basic LVS
scenario, but is present in other scenarios (such as KKLT).
Because of the discrete symmetry a→ −a, the only non-trivial
coefficients are fϕϕϕ and fϕaa (parity implies fϕϕa = faaa = 0).

We shall adopt the embedding formalism [43, 58]: points
of AdSd+1 are represented as null rays in Rd+2,2,

X2
0 −X2

1 ... −X2
d +X2

d+1 = 1, (74)

on which the conformal group SO(d, 2) has a natural action.
The boundary is identified with the projective null cone

PA ' λPA, λ ∈ R. (75)

CFT operators can then be extended on the full space by im-
posing the homogeneity property

O(λPA) = λ−∆O(PA), (76)

and conformal invariance becomes manifest. In this formalism,
the bulk-to-boundary propagator of an operator with dimen-
sion ∆ acquires the simple form

Π(P ,X)∆ =
1

(2P ·X)∆ . (77)

The 3-point correlator arising from the ϕ3 contact Witten di-
agram can then be written as

〈ϕ(x1)ϕ(x2)ϕ(x3)〉 =

= g

∫
AdS

dX 1
(2P1 ·X)∆ϕ (2P2 ·X)∆ϕ (2P3 ·X)∆ϕ

.

(78)

Using the integral representation formula

1
(2P ·X)∆ =

1
Γ(∆)

∫
ds s∆e−2sP ·X , (79)

it follows (e.g. see [44]) that the correlator has the form of Eq.
(22), with a coefficient

fϕϕϕ =
3gπd/2Γ

( 3∆ϕ−d
2
)

Γ(∆ϕ)3
. (80)

Note that, for g > 0, this is positive for all ∆ϕ > 1.
For the correlation function involving axions, the appear-

ance of derivatives can be translated into

〈ϕ(x1)a(x2)a(x3)〉 = −µ
∫
AdS

dX 1
(2P1 ·X)∆ϕ

× (ηAB +XAXB)
∂

∂XA

1
(2P2 ·X)∆a

∂

∂XB

1
(2P3 ·X)∆a

.

(81)

With a few manipulations, and using −P1 · P2 = x2
12, the

integral can now be turned into a sum of terms with the same
structure as (78), resulting in

fϕaa =
πd/2Γ

( 2∆a+∆ϕ−d
2

)
Γ(∆ϕ)Γ(∆a)2

[
µ(∆ϕ + 2∆a − ∆2

a − 3) + κ
]
. (82)

For future reference, we note that when ∆a = 3 and κ = 0
(corresponding to an axion with a flat potential, as in LVS)
this becomes

fϕaa =
µπd/2Γ

( 2∆a+∆ϕ−d
2

)
Γ(∆ϕ)Γ(∆a)2

(∆ϕ − 6), (83)

a quantity which changes sign for ∆ϕ > 6.

4.2.2. Mixed Anomalous Dimensions
We reviewed in section 3 how consistency constraints on EFTs
often involve the signs of certain operators, and so we will
be interested in quantities within the CFT that are sensitive
to such signs. One object in particular that we will be con-
cerned with are the anomalous dimensions of mixed double-
trace states, namely operators of the form [OϕOa]n,`. Al-
though no a priori constraints are known on their sign, we
will see that for these operators negativity of the anomalous
dimension appears to be crucial for satisfying many swamp-
land conjectures. This work is exploratory in nature. We shall
here propose and explore the consequences of the following:

Conjecture

Large spin anomalous dimensions of mixed dou-
ble trace operators are negative for duals to sce-
narios of moduli stabilisation.

From the point of view of the Analytic Bootstrap [13, 14],
crossing symmetry does require in this context one specific
behaviour for the anomalous dimensions as a function of the
spin. Given two primaries O1 and O2 with twists τO1 and
τO2 , the bootstrap equations in Lorentzian signature11 imply
the existence of an infinite series of operators whose twist is

11d > 2 is also assumed.
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arbitrarily close to the sum of the two. Furthermore, the twist
of these operators asymptotically behaves as

τ (`) ' τO1 + τO2 −
c

`τ
∗ for `� 1, (84)

where τ∗ is the minimal twist amongst all operators contained
in both the OPEs of O1 and O2 with themselves. While these
results are easily seen to be a consequence of (44) at tree level
(see below), we emphasize that they apply in full generality.

Assuming ∆ϕ + ∆a /∈ Z, the only tree-level Witten di-
agrams contributing to the mixed anomalous dimension are
those associated with the correlation function

G(xi) = 〈Oϕ(x1)Oϕ(x2)Oa(x3)Oa(x4)〉, (85)

and they are shown in Figure 1. Furthermore, we make the
claim that at O( 1

N2 ), the leading contribution in the 1/` ex-
pansion only comes from the s-channel diagram. Let us first

Figure 1: Witten diagrams contributing to the anomalous di-
mensions of double trace operators of the form [Oϕ1Oϕ2 ](n,`).
The volume modulus corresponds to the continuous orange
lines, and the axion to the blue dashed ones. The last diagram,
without internal propagators, only contributes to anomalous
dimension for small `.

give a generic argument based on the claim in the first para-
graph, before reaching the same conclusion with the formula
described in the last section. One can consider the following
example: three scalars on AdS, with the only cubic vertex of
the form

L ⊃ gϕ1∂...∂ϕ2∂...∂Φ, (86)

where any possible combination of derivatives is allowed. Since
vertices with more than three fields do not affect the anoma-
lous dimension for large ` at this order in the coupling expan-
sion, they can all be set to zero for the sake of the discussion.
The Witten diagram ϕ1ϕ1 → ϕ2ϕ2 only contains t and u chan-
nels with an exchange of a Φ, at order 1/N2. Now, neither of
the OPEs Oϕ1Oϕ1 or Oϕ2Oϕ2 contains Φ at any order in per-
turbation theory, since the correlator 〈Oϕ1Oϕ1OΦ〉 vanishes
as a result of the discrete symmetry

P1 : ϕ1 −→ −ϕ1, Φ −→ −Φ, (87)

and the same result holds for Oϕ2 . More generally, the two
OPEs do not contain any common single trace operators. It is

thus possible to conclude that there is no contribution to the
anomalous dimensions at leading order in the coupling from
scalar diagrams built out of three-field interactions in t and u
channel. The first correction will be due to the presence of the
double trace operators [Oϕ1Oϕ1 ]0,`

12 in the OPE Oϕ2 ×Oϕ2 ,
which results in a scaling behaviour of 1/`2∆1 at O

( 1
N4 ). The

intuitive meaning of this result is that the mixed anomalous
dimension for the Oϕ1Oϕ2 operator is equivalent to the bind-
ing energy of the two particle ϕ1ϕ2 state in AdS. This binding
enegy would arise from particle exchange, which would corre-
spond to s-channel for the ϕ1ϕ1 → ϕ2ϕ2 topology.

A more direct way to see this is through the formula

γ(0, `) = −
∫ +i∞

−i∞

ds

2πiM(s, 0) Γ
(

∆1 −
s

2

)
Γ
(

∆3 −
s

2

)
Γ
(
s

2

)2
×

3F2(−`, ∆1 + ∆3 + `− 1, s2 ; ∆1, ∆3; 1),
(88)

where M(s, t) is the Mellin amplitude defined with the con-
ventions of paragraph 44.13. For large `, it is possible to make
the approximation

3F2(−`, ∆1 + ∆3 + `− 1, s2 ; ∆1, ∆3; 1) ' (89)

Γ(∆1)Γ(∆3)

Γ(∆1 − s
2 )Γ(∆3 − s

2 )
1
`s

(90)

Given that the contour is closed on the right half-plane, the
integral is dominated by the lowest pole in s of M(s, 0) - that is
the conformal dimension of the exchanged scalar. For a generic
exchange diagram, the Mellin amplitude will have the form

M(s, t) = f12XfX34
∑
m

QJX ,m(t)

s− ∆X + JX − 2m + ... (91)

where contributions from the crossed channels have been omit-
ted. In our case, the t-poles are set to zero and the only relevant
ones are those coming from the s and u channels. The latter,
however, translate into a series of s poles all on the left of the
integration contour, because of the relation

s+ t+ u =
∑
i

∆i, (92)

and as such do not give any contribution to the integral. There-
fore, the anomalous dimensions will only be sensitive to the
s-channel amplitude, and scale as 1/`∆ex in the large ` limit -
we therefore recover a special case of (84). Moreover, equation
(88) easily allows to go one step further and actually compute
the large-` behaviour of γ(0, `). Specialising to a Lagrangian
of the form (73),

γϕa(0, `) = −2fϕϕϕfϕaa
Γ(∆a)Γ(∆ϕ)2

Γ
(

2∆a−∆ϕ
2

)
Γ
(

∆ϕ
2

)3
1
`∆ϕ

+O
(1
`

)
(93)

which agrees with the formulas presented in [59]. Although
their derivation is significantly shorter and does not require

12Assuming (without loss of generality) ∆1 < ∆2.
13There is a constant shift with respect to the canonical definition of

the t variable in order to simplify the form of the Mack polynomials.
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the introduction of Mellin amplitudes, we emphasize that our
formalism provides a systematic procedure to calculate cor-
rections at each order in 1/`. In principle, it is also possible
to resum all these contributions and derive the value of the
anomalous dimensions for finite spin, up to the effect of con-
tact terms. The asymptotic series is guaranteed to converge
for any spin ` > 1 thanks to the analiticity properties proven
in [54]. Furthermore, we hope this approach might help to
highlight possible connections with the standard bounds for
scattering amplitudes in Minkowski space.

We flag up here the factor of

1

Γ
(

2∆a−∆ϕ
2

)
in Eq. (93), as for the case of light axions with ∆a = 3 this
has interesting sign dependence on ∆ϕ.

4.3. Implications
We now study the anomalous dimensions within different sce-
narios of moduli stabilisation.

4.3.1. LVS
For the case of LVS, there are no ϕaa couplings in the poten-
tial. Then, inserting the value of the three-point function OPE
coefficients from Eq. 4.2.1 immediately leads to

γϕa(0, `) =− gµ(∆ϕ − 6)
M2
PR

2
AdS

3π3

Γ(∆ϕ)2
×

Γ
( 3∆ϕ−3

2
)

Γ
(∆ϕ+3

2
)

Γ
( 6−∆ϕ

2
)

Γ3
(∆ϕ

2
) 1
`∆ϕ

+O
(1
`

) (94)

where we have also specialized to ∆a = 3 and d = 3. As all
other terms are automatically positive and ∆ϕ ≥ 3

2 due to
the standard unitarity bound.14, the sign of the φa anomalous
dimensions is governed, at least asymptotically, by the sign of
the combination

γϕa(0, `) ∼ −gµ (∆ϕ − 6)
Γ
( 6−∆ϕ

2
) . (96)

We can now consider the meaning of equation (96) in more
detail. In particular, an interesting correlation appears be-
tween the allowed values of the parameter space in String The-
ory and the sign of the anomalous dimension, which is highly
reminiscent of the bounds discussed in the previous sections.

In particular, the RHS is negative if the variables take
values in the original LVS model in the V → ∞ limit (with

14This is only true in absence of dynamical gravity, which induces
correction saturating the unitarity bound on the 1/` exponent and thus
scaling as 1/`d−2. Since the moduli interactions are suppressed by the
same powers of the Planck mass as standard gravitational interactions,
it is only possible to integrate out such effects if gµ >> 1, and otherwise
Eq. (96) actually parametrizes to the leading behaviour of

γ
ϕa(0, `)− γϕa(0, `)grav (95)

for sufficiently high values of `. In principle, one could also suspect that
subleading terms in the 1/N expansion might decrease with a lower
power of ` and dominate asymptotically if the coupling is fixed. In our
example, however, RAdS diverges in the large volume limit and it is
legitimate to consider the 1

N2 correction only.

∆ϕ = 8.04), but switches to positive if certain swampland-like
transformation are performed on the AdS theory. The most
obvious example of these is the sign exchange µ→ −µ, corre-
sponding on the string theory side (as discussed in 2.3) to an
axion decay constant that diverges in the large volume limit,
in contrast with the axion weak gravity conjecture and the no
transPlanckian axion decay constant conjecture. A similar be-
haviour occurs for the change g → −g. A simultaneous change
of both signs is allowed, as this is equivalent to the field redef-
inition ϕ→ −ϕ, but the product of the two signs is a physical
quantity independent of the field redefinition.

There is also an interesting dependence on ∆ϕ, as any value
∆ϕ < 8 (and consistent with the unitarity bound) also gives
rise to a positive anomalous dimension, as can be seen in Fig.2.
Recall that the value of ∆ϕ arises from the volume scaling of

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

LVS PS

Figure 2: Prefactor C(∆ϕ) = γ(0, `)`∆ϕ as a function of ∆.
For graphical purposes, it has been rescaled by a factor of( ∆

10
)6. The lowest possible value admitting a negative anoma-

lous dimension is ∆ = 8. From then onwards, the sign oscillates
between positive and negative values with decreasing ampli-
tude and period of 2. The two arrows show the location of the
LVS and Perturbative Stabilization models respectively, in the
V → ∞ limit .

the potential. Quite remarkably, LVS is found to reside in a
rather special place, right at the edge of the lower boundary
of the ‘allowed’ region with negative anomalous dimension.

While the region where ∆ϕ < 6 can be understood as cor-
responding to a potential growing parametrically faster than
the string scale M4

s , we have no valid interpretation as to why
∆ϕ = 8 should be regarded as a critical value. We also note
that γ(0, `) goes to zero exactly at the point where ∆ϕ = 6,
which by the above argument is expected to exhibit some kind
of transition.

It is intriguing that in the V → ∞ limit of LVS, the value
of ∆ϕ is so close to 8. At finite volume, ∆ϕ approaches the
asymptotic value of 3

2
(
1 +
√

19
)
' 8.038 from below as the

volume is brought into infinity, with corrections that scale as
δ∆ϕ ∼ 1

lnV . Including these corrections in the 1-modulus po-
tential explicitly, one finds that the finite volume necessary to
achieve ∆ϕ = 8 is given by

〈ϕ〉 = 1
2
(
λ− 40

3λ
) (97)

Numerically, this amounts to V ∼ 105/106.
However, one cannot conclude that at such volumes it is

definitively true that ∆ϕ < 8, as once volumes become smaller
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corrections that are higher-order in α′ (and so can normally be
neglected) become relevant for the question of whether ∆ϕ > 8
or ∆ϕ < 8. Specifically, the fractional difference between 7.99
and 8.00 is O(10−3) and so effects that are far too small to
modify the existence of the minimum are capable of changing
the sign of (∆ϕ− 8). This can be verified by a numerical study
of the full 2-modulus LVS stabilisation. Here one sees that the
sign of ∆ϕ− 8 at finite V (e.g. V ∼ 106) can easily be modified
by corrections of the form

K = −2 ln (V + ξ)→ K = −2 ln
(
V + ξ +

ξ2

V

)
.

This is illustrated in figure 3. As the determination of the

Figure 3: This plot illustrates the effect of a higher-order cor-
rection to the Kähler potential. The x-axis shows the loga-
rithm (in base 10) of the stabilised volume while the y-axis
shows the conformal dimension of the dual volume operator,
∆ϕ. The case on the left is LVS based on the original P4

1,1,1,6,9,
with a volume V = 1

9
√

2

(
τ3/2
b − τ3/2

s

)
, a Kähler potential

−2 ln (V + ξ), and a superpotential W = W0 +Ase
−2πTS with

W0 = 1 and As = 1. Different values of the stabilised volume
have been obtained by taking different values of ξ. In this
case, the logarithmic corrections are seen to bring ∆ϕ below 8
at smaller volumes. The case on the right is identical, except
for a Kähler potential K = −2 ln

(
V + ξ + ξ2

V

)
. In this case,

∆ϕ > 8 throughout.

coefficients of such corrections is beyond any current control,

this demonstrates why there is no controlled region of LVS in
which one can be sure that ∆ϕ < 8.

It is suggestive to find a connection between the Swamp-
land and something so closely resembling CFT consistency
conditions. Furthermore, the γϕa’s are essentially the only
OPE data (at least at tree-level) sensitive to the sign of the
product gµ. However we stress again that negativity of the
anomalous dimensions is not established in general for double
trace operators constructed of two different primaries.

4.3.2. Perturbative Stabilisation
We can perform a similar analysis for other models of IIB
moduli stabilisation, even if they are not be as fully worked
out as LVS. In particular, they do not offer the cleanliness of
the V → ∞ limit of LVS (the holographic study of IIA moduli
stabilisation scenarios [60] would also be interesting, as it of-
fers a different large-volume limit driven by large flux quanta,
but beyond the scope of this work). One example is that of
the so-called perturbative stabilization [61, 62], in which the
volume is stabilised by the competing effects of two separate
perturbative corrections to the scalar potential. Here the dy-
namics of the volume modulus is governed by a potential of
the form

V (ϕ) = Ae
−λ1ϕ
MP −Be−

λ2ϕ
MP , (98)

which reflects competition between two effects scaling with
different powers of the volume. Such a potential could, for in-
stance, be generated by a combination of α′ corrections scaling
as V−3, like in LVS, and string loop effects of order V−

10
3 . The

minimum is located at

ϕc =
log
(
Aλ1
Bλ2

)
λ1 − λ2

, with Vmin = Be−λ2ϕc
(
λ2
λ1
− 1
)

,
(99)

and results in an AdS vacuum for λ1 > λ2. In a top-down
scenario, the coefficients λ1 and λ2 would be fixed. However,
for purpose of exploration we may consider them arbitrary,
allowing for the case that |λ1 − λ2| � |λ1 + λ2| which leads
to large volumes (alternatively, one could demand that the
coefficients are fine tuned with A � B). Expanding about
the minimum, one recovers n-point interactions for the volume
modulus

Lϕn = (−1)n−1 3M2
Pλ1λ2
R2
AdS

λn−1
1 − λn−1

2
λ1 − λ2

(ϕ)n. (100)

Consequently the conformal dimension of the corresponding
CFT operator is

∆ϕ =
3(1±

√
1 + 4

3λ1λ2)

2 . (101)

The resemblance with the result for LVS should not be too
surprising, as the potential actually reduces to that of standard
LVS in the limit λ1 → λ2. The generalization of Eq. (96) is

γϕa(0, `) ∼ −µλ1λ2(λ1 + λ2)
(∆ϕ − 6)
Γ
( 6−∆ϕ

2
) , (102)

which again lends itself to an interpretation in terms of
Swampland constraints. For the values considered above,
namely

λ1 =
10
3

√
3
2 , λ2 = 3

√
3
2 , (103)
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the anomalous dimensions are again negative. However, the
sign changes under any of the following:

• µ → −µ, corresponding to fa ∼ MPV
2
3 - again in con-

trast with the axion weak gravity conjecture.

• λ2 → −λ2, which leads to an unbounded potential for
large values of the volume. Notice that the same does not
happen if one inverts the sign of λ1, since λ1 > λ2 and
the anomalous dimension is proportional to the product
(λ1 + λ2)

• 0 ≤ λ1λ2 ≤ 40
3 : This is exactly analogous to LVS. If

0 ≤ λ1λ2 ≤ 6, there will be at least one term in the
potential growing faster than M4

s , but otherwise there
is no clear interpretation. As a further comment, this
is slightly reminiscent (but qualitatively different) from
similar constraints arising from the De Sitter Swamp-
land conjecture, of the schematic form λi < c with c an
order one constant [8].

4.3.3. KKLT
Another well-studied case where these ideas can be tested is
the KKLT construction [63]. Although this ultimately aims
at de Sitter space, KKLT starts with an AdS vacuum that
is subsequently uplifted to dS: it is the former that we will
discuss here.

The Kähler potential is given by the standard tree-level
expression

K = −3 ln[−i(ρ− ρ̄)], (104)

while the superpotential includes a tree level contribution from
fluxes and non-perturbative effects.

W = W0 +Aeiαρ. (105)

The supergravity potential

V = eK
(
Gρρ̄DρWD̄ρW − 3|W |2

)
(106)

can be minimised while simultaneously preserving supersym-
metry, for a critical value of the modulus field σcr satisfying

W0
A

= −e−ασcr (1 +
2ασcr

3 ). (107)

Since the supergravity approximation and the single instanton
approximation require σcr � 1 and ασcr > 1 respectively, W0
has to be tuned to be very small.

The situation when considering low energy excitations
around this vacuum is qualitatively different from LVS. As
the instanton breaks the continuous shift symmetry, the axion
now has both a mass and also new potential-type interactions
with the volume modulus. From a holographic perspective, the
first consequence is that the conformal dimension of the axion
is no longer ∆ = 3, but instead

∆a =
3
2

(
1±
√

1 +
8
9ασcr(2ασcr + 3)

)
, (108)

while for the volume modulus, the result is

∆ϕ =
3
2

(
1±
√

1 +
8
9 (2 + ασcr)(1 + 2ασcr)

)
. (109)

A noteworthy point is that the last two equations imply ∆ϕ <
2∆a, so that the oscillating sign behaviour due to the negative
gamma function is not reproduced in this case.

The cubic interaction terms in the potential now read

V (3)(ϕ, a) ⊃ − 1
MPR

2
AdS

√
2
3ασcr(2 + ασcr)(3 + 2ασcr)ϕa2

− 1
MPR

2
AdS

√
2
3
[
2 + ασcr(5 + ασcr(5 + 2ασcr))

]
ϕ3.

(110)
The interactions of the form ϕn∂µa∂

µa are left unchanged as
they arise from the axion kinetic term. For completeness, we
also report the quartic interactions in the potential:

V (4)(ϕ, a) ⊃ 1
18M2

PR
2
AdS

[
− 6ασ3

cr(3 + 2ασcr)a4

+ 6ασcr(3 + 2ασcr)(4 + ασcr(3 + ασcr))a
2ϕ2

+ (1 + ασcr)(14 + ασcr(21 + ασcr(11 + 14ασcr)))ϕ4
]
.

(111)
In particular, the anomalous dimensions can be computed

as in section 4.2.2 (note that the fact that ∆ϕ < 2∆a also im-
plies that the dominating contribution to anomalous dimen-
sions at large ` will always be the one coming from the ex-
change of a ϕ, and one does not have to worry about potential
loop effects proportional to `−2∆a). The main difference is that
there are now two contributions to fϕaa, arising from both the
ϕa2 and ϕ∂µa∂

µa vertices, and with opposing signs. As the
sign of the ϕ3 coefficient in (110) is fixed it is the sum of these
two compensating effects that must be considered, according
to

γ(0, `) ∝ −g
[
ασcr(2 + ασcr)(3 + 2ασcr)

+ 2
(

∆ϕ(ασcr)− ∆2
a(ασcr) + 2∆a(ασcr)− 3

)]
.

(112)

The anomalous dimensions are then negative provided

ασcr & 2.24, (113)

which is always true in KKLT’s regime of validity of W0 ∼
e−ασ � 1 where any multi-instanton effects can be neglected.

We note that negativity was not automatic and required
the presence of the additional ϕa2 term in the potential, as the
values of the conformal dimensions were such that the contri-
bution from the derivative vertex switched sign with respect to
LVS and the potential contribution was necessary to produce
negative anomalous dimensions.

4.3.4. Racetrack
Another popular scenario has been that of racetrack stabilisa-
tion, where the tree-level flux superpotential is set to zero and
the dominant effect instead results from an interplay between
two different non-perturbative effects (for example see [64]),

W = Aeiαρ −Beiβρ. (114)

Assuming without loss of generality α > β > 0 a supersym-
metric minimum of the potential is found at

e−(α−β)σcr =
B(3 + 2βσcr)
A(3 + 2ασcr)

. (115)
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Using the same techniques, it is possible to compute the super-
gravity potential in Eq. (106) and expand around its minimum
to obtain the conformal dimensions and low-point interactions
of the axion and volume modulus.

∆a =
3
2

[
1±
(

1 +
8

243 (3 + 2ασcr)(3 + 2βσcr)×

(2αβσ2
cr + 3ασcr + 3βσcr)

) 1
2

]
,

(116)

∆ϕ =
3
2

[
1±
(

1 +
8

243 (6 + 3ασcr + 3βσcr + 2αβσ2
cr)×

(3 + 4αβσ2
cr + 6ασcr + 6ασcr))

) 1
2

]
.

(117)

They can be shown to satisfy ∆a < ∆ϕ < 2∆a, so that again
there is no oscillating behaviour and one should not worry
about higher order effects becoming relevant for large `.

Here, the cubic terms in the potential read

V (3)(ϕ, a) ⊃ −

√
2
3

9MPR
2
AdS

[
(ασ(2βσ + 3) + 3βσ + 3)×

(σ(α+ β)(2ασ + 3)(2βσ + 3) + 6)ϕ3

−
(
α2σ(2βσ + 3) + 2α(βσ + 1)(βσ + 3) + 3β(βσ + 2)

)
×

σ(2ασ + 3)(2βσ + 3)ϕa2
]
,

(118)

while the quartic ones are

V (4)(ϕ, a) ⊃ 4
162M2

PR
2
AdS

[
σ3(α− β)2(2ασ + 3)×

(2βσ + 3)(2αβσ + 3(α+ β))ϕ4

− 6σ(2ασ + 3)(2βσ + 3)
(
α3σ2(2βσ + 3)

+ α2σ(βσ(4βσ + 11) + 9) + α(βσ + 2)2(2βσ + 3)

+ 3β(βσ(βσ + 3) + 4)
)
a2ϕ2

−
(
14α4σ4(2βσ + 3)2 + 5α3σ3(2βσ + 3)(8βσ(βσ + 3) + 15)

+ α2σ2(2βσ + 3)(βσ(2βσ(14βσ + 69) + 169) + 96)
+ 3ασ(2βσ + 3)(βσ(βσ(28βσ + 43) + 52) + 35)

+ 9(βσ + 1)(βσ(βσ(14βσ + 11) + 21) + 14)
)
a4
]
.

(119)
This time, the sign of the anomalous dimensions is determined
by the combination

γ(0, `) ∝ −µ
√

2
3

[1
9 (3 + 2βσcr)(3 + 2ασcr)(2α2βσ3

cr

+ 2αβ2σ3
cr + 3α2σ2

cr + 3β2σ2
cr + 8αβσ2

cr + 2αβ2σ2
cr

+ 6ασcr + 6βσcr) + 2
(

∆σ(ασcr,βσcr)− ∆2
a(ασcr,βσcr)

+2∆a(ασcr,βσcr)− 3
)]

.
(120)

Numerically, one can verify that this is negative in the con-
trolled region (α + β)σcr & 0.75, which again contains the
region of parameter space where the single-instanton approxi-
mation is valid for both terms in the superpotential.

The summary of this is that in a variety of examples neg-
ativity of γϕa is satisfied within the controlled region, with a
variety of interlocking parts leading to this conclusion.

5. HEAVY STATES AND THE SWAMPLAND
DISTANCE CONJECTURE

So far our swampland analysis has focused on the question of
transPlanckian axion decay constants. However we can also
make connections to the swampland distance conjectures [2,
65]. These conjectures are statements about the appearance of
light towers of states as one moves through large (in general
transPlanckian) distances in moduli space. They come in both
original [2] and refined versions [65].

The original version states that as one moves an asymp-
totic geodesic distances d(P ,Q) (from P toQ in moduli space),
a tower of states becomes light, with the masses of the tower
particles descending as

M(P ) =M(Q)e−λd(P ,Q)/MP

in the limit that d(P ,Q) → ∞. Examples of this behaviour
are the towers of Kaluza-Klein or string modes that become
light on moving to asymptotically large geometric volumes, or
alternatively the towers of winding/wrapped brane modes in
the limit that cycle sizes collapse to zero volume.

The refined version states that the constant λ is O(1) and
that the behaviour is realised not merely asymptotically but
already once d(P ,Q) & MP . Equivalently, the tower of light
modes occurs not simply at the asymptotic boundaries of mod-
uli space but already once transPlanckian field displacements
occur.

For the purpose of constraining low-energy effective field
theory Lagrangians, it is the refined swampland distance con-
jecture that is much more powerful. The original swampland
distance conjecture constrains behaviour at asymptotic dis-
tances in field space. However, the low-energy physicist is only
sensitive to a particular EFT and perturbations around it,
while such asymptotic displacements are not accessible as a
small perturbation about any low-energy Lagrangian – and so
cannot be used to say that a particular effective field theory is
or is not in the swampland.

This is not so for the refined distance conjecture. The cou-
plings and interactions of gravitationally coupled moduli ϕ can
be ordered by an expansion in

(
ϕ
MP

)
,
(
ϕ
MP

)2. Constraints
on the behaviour of masses (for example) for transPlanckian
moduli displacement constrain the form and signs of such cou-
plings, as it is essential to the refined distance conjecture that
the behaviour kick in once ∆ϕ ∼MP . This therefore provides
constraints both on models of large-field inflation and also on
the leading perturbative interactions of gravitationally coupled
scalars (such as moduli).

5.1. A Puzzle
Although a lot of evidence exists for some form of the refined
distance conjecture [66, 67, 68], at this point we want to note
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a puzzle concerning the refined distance conjecture. The con-
jecture states that towers of states should become light for
geodesic displacements ∆ϕ & MP in moduli space. We con-
sider an ordinary type IIB Calabi-Yau orientifold compactifi-
cation in a limit of large internal geometric internal volume
V � l6s (such as LVS). As the canonically normalised vol-
ume field is ϕ = MP

√
3
2 ln τb = MP

√
2
3 ln

(
V/l6s

)
, large field

displacements (|∆ϕ| � MP ) can be achieved by exponential

rescalings V → e
±
√

3
2 |∆ϕ|/MP V.

For displacements with positive ∆ϕ > 0, it is clear how the
conjecture is satisfied. In this case there are multiple towers
of modes becoming light, for example the towers of string or
KK modes. Taking these as canonical examples, their masses
behave as

Mstring ∝
MP√
V

, MKK ∝
MP

V2/3 ,

using the standard relationship between the string scale and
4-d Planck scale. As M < MP , these indeed correspond to
particle states in 4d QFT. For positive displacements ∆ϕ > 0
the masses of the states in these towers then behave as

Mstring = e
− 1

2

√
3
2 ∆ϕ/MP , MKK = e

− 2
3

√
3
2 ∆ϕ/MP .

However, the refined distance conjecture refers simply to
transPlanckian displacements d(P ,Q) > MP and so should
therefore apply equally to displacements with ∆ϕ < 0 – corre-

sponding to rescalings V → e
−
√

3
2 |∆ϕ|V. Equivalently, when

writing an effective Lagrangian that is valid about a large-
volume locus in moduli space, we are free to make a field re-
definition ϕ → −ϕ, while any general statement about low
energy effective Lagrangians must remain valid.

This is where the puzzle lies – for if we start at large vol-
umes V ≫ 1 and move inwards in moduli space towards
smaller volumes, with |∆ϕ| > MP but ∆ϕ < 0, there is no
apparent tower of particle states that becomes light. It is clear
that as V decreases the string and KK tower becomes heavier.
What about the tower of winding states? As these have masses
Mwinding ∼ RMstring, it is true that Mwinding

Mstring
decreases as

the volume decreases. However, as Ms ∼ MP√
V

, we have over-
all Mwinding ∼ MP

V1/3 , and so the tower of winding states also
increases in mass under a displacement ∆ϕ < 0, |∆ϕ| > MP .

We can also consider states arising from wrapped branes.
A D(p + 1)-brane wrapped on an internal p-cycle Σp corre-
sponds to a particle state in spacetime with a mass M ∼(
Vol(Σp)/

√
V
)
MP . For branes wrapping internal 1-cycles or

2-cycles, the mass of the resulting state increases under reduc-
tions in the bulk volume (as Vol(Σp) ∝ V1/6 or V1/3 for bulk
1- or 2-cycles). For a brane wrapping a internal 3-cycle, the
volume factors cancel and so the tower remains unaltered in
mass.

These volume scalings imply that a tower of particle states
decreasing in mass under reductions in volume, if coming from
wrapped branes, would require the branes to wrap bulk 4-
cycles (or 5-cycle or 6-cycles) in the internal space. However,
in the limit of large radii R � ls this is immediately prob-
lematic. For a brane wrapped on a 4-cycle, the mass of such
‘states’ behaves as M ∼ RMP , and so in a large radius limit
such wrapped branes have masses above the 4-d Planck scale.

As such, they cannot be interpreted as particles within the 4d
effective field theory and instead correspond to black holes. In
the large radius limit of R � ls they do not provide exam-
ples of particle states that become lighter on reduction of the
internal volume.

It is still true that in the strict limit of d(P ,Q) → ∞ (as
in the original distance conjecture), this is not an issue – in
the limit of infinite d(P ,Q) the compactification reaches down
to (formally) zero radius, entering a regime where winding
modes become light and wrapped brane states do correspond
to particles. However, this puzzle can be formulated for any
arbitrarily large but finite value of d(P ,Q): by working with
exponentially large internal volumes, and starting arbitrarily
far away from the centre of moduli space, the geodesic distance
to the self-dual radius can be made arbitrarily large.

The large volume limit therefore appears to create a prob-
lem for the ordinary formulation of the refined swampland dis-
tance conjecture: under displacements |∆ϕ| � MP , ∆ϕ < 0,
corresponding to exponential reductions in the internal vol-
ume, all the towers of heavy particle states appear to be in-
creasing in mass, with Mtower → e+λ|∆ϕ/MP |Mtower, rather
than decreasing.

5.2. Heavy Modes and Holographic Anomalous Dimen-
sions

We now extend our earlier results involving the [ϕa] mixed cor-
relator to the case of mixed correlators involving heavy modes.
In particular, we examine the implications of requiring a nega-
tive anomalous dimension for double trace CFT states in which
one operator corresponds to a heavy field ψ. ‘Heavy’ here is
defined by a condition that the conformal dimension ∆ψ of the
field diverges in the limit that V → ∞. For the case of LVS,
such modes can correspond either to certain moduli (such as
the complex structure moduli or the small Kähler moduli) or
to the KK, string or winding modes.

We restrict our analysis in this section to LVS. There are
then three types of mixed state involving a heavy mode that
we can consider. These are mixed states containing two heavy
modes, [ψψ′], mixed states of a heavy mode and the volume
modulus, ψϕ, and mixed states of a heavy mode with the light
axion, ψa. In each case we want to determine the signs of the
anomalous dimensions γψψ′ , γψϕ and γψa. Following section
4, we restrict the analysis to scalar modes only.

As for the treatment of the light modes, the underlying
parity properties of the ϕ and a fields imply that the relevant
Mellin diagram is one involving exchange of the ϕ field – the a
field has odd parity and so a single a field cannot be exchanged.
This leaves the ϕ field as the only scalar with low conformal
dimension, requiring us to determine the Cψψϕ structure co-
efficient as the only additional feature compared to the earlier
analysis involving only the light modes.

In a similar fashion to the axion in KKLT, there are two
contributions to this. One arises from the kinetic term coupling
f(ϕ)∂µψ∂

µψ, and the other from the mass term m2(ϕ)ψ
2

2 .
The linear coupling can be obtained by deriving the general
form of these couplings and then expanding to linear order.

For a general heavy mode ψ, we can determine the appear-
ance of the volume modulus in the kinetic and mass terms as
follows, by temporarily using the formalism of N = 1 super-
gravity. As the volume field originates as a Kähler modulus, it
cannot appear in the superpotential. In an N = 1 supergrav-
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ity Lagrangian, the kinetic terms and mass fields for the heavy
field originate from

Kψψ̄∂µψ∂
µψ̄ + eK

(
Kψψ̄DψWDψ̄W̄ + . . .

)
∈ L. (121)

The point is that as the Kähler moduli T cannot appear in the
superpotential, the dependence on the volume has to go via
the Kähler potential (in particular through the kinetic terms
Kψψ̄). As the overall Kähler potential for a IIB compactifica-
tion is K = −2 lnV + . . ., the effective Lagrangian for terms
quadratic in ψ is

Lψψ = Kψψ̄∂µψ∂
µψ̄ +

1
V2K

ψψ̄ψψ̄.

This allows the volume dependence of Kψψ̄ to be determined,
as it is fixed by the requirement that the physical mass

m2 =
(Kψψ̄)2

V2

scale correctly as a function of the volume.
The scaling of the physical mass of a heavy mode with the

volume (in the large volume limit) is determined on general
principles. As examples, a string mode behaves as Ms ∝ MP√

V
,

a bulk KK mode behaves as MKK ∝ MP

V2/3 and a bulk winding
mode behaves as Mwinding ∝ MP

V1/3 .
For example, for the case of a bulk KK mode, it follows

that Kψψ̄ ∼ V
−1/3, and so using ϕ =

√
2
3 lnV, we obtain a

kinetic term coupling that scales as e−
√

1
6ϕ/MP . There will be

additional overall prefactors depending on complex structure
(and other) moduli, but as our interest is in the coupling to
the volume mode we can neglect these.

The Lagrangian describing the coupling of the light volume
modulus to the heavy bulk KK modes is then

1
2e
−
√

1
6 (ϕ−ϕ0)/MP ∂µψ∂

µψ−m2
ψe
− 5√

6
(ϕ−ϕ0)/MP ψ

2

2 . (122)

We shift the origin of ϕ by an amount ϕ0 = 〈ϕ〉, so that
the heavy field ψ is canonically normalised in the vacuum.
Expanding the exponential to first order, the 3-pt couplings
are

Lϕψψ = −
√

1
6 (δϕ)

∂µψ∂
µψ

2 +m2
ψ

5√
6
(δϕ)

ψ2

2 . (123)

The resulting structure function is

fϕψψ =
Γ
(

2∆ψ+∆ϕ−3
2

)
2Γ(∆ϕ)Γ(∆ψ)2

×(√
1
6
(

∆ϕ + 2∆ψ − ∆2
ψ − 3

)
+

5√
6

∆ψ
(

∆ψ − 3
))

.

(124)

As once ∆ψ � 1 the quadratic terms in ∆ψ dominate, this
clearly satisfies fϕψψ > 0 as – analogously to what occurs in
KKLT – the contribution from the mass term is larger than the
contribution from the kinetic term. Naively, this looks remi-
niscent of the bound discussed in [71], since the sign remains

negative as long as the coefficient in the mass term exponential
is larger than the 1/

√
6 coming from the kinetic term. How-

ever, the two numbers are not really independent in this case,
and it does not appear possible to draw similar conclusions.

We can ask what condition would lead to opposite sign be-
haviour, fϕψψ < 0. This would require the kinetic coupling in
Eq. (124) to be greater than the mass coupling. It is easy to
see that the critical volume behaviour here is Kψψ̄ = 1

V , for
which the two terms quadratic in ∆ψ cancel (the subleading
terms are O(1/N) suppressed and so are not trustworthy at
this order). Physically this would correspond to a state that
remains unaltered in mass as V → ∞, for example particles
arising from D3-branes wrapped on holomorphic 3-cycles. Pos-
itive sign behaviour, fϕψψ < 0 is then equivalent to having a
state that grows in mass in the V → ∞ limit, although as pre-
viously discussed such ‘states’ would have masses mψ > MP

and so cannot be regarded as particle states in the effective
field theory.

We therefore see that the overall behaviour for the heavy
modes can be summarised as

fϕψψ > 0 ≡ ∂m2(ψ)

∂ϕ
< 0,

fϕψψ < 0 ≡ ∂m2(ψ)

∂ϕ
> 0.

That is, the sign of the structure function is determined by the
behaviour of the massive states: a positive structure function is
equivalent to states decreasing in mass with increased volume,
and a negative structure function to the opposite.

The anomalous dimension is determined by the (negative)
product of the two structure functions,

γ ∝ −fϕψψfϕϕϕ.

Using the earlier results for LVS, it then follows that a nega-
tive anomalous dimension for mixed states involving the heavy
modes is equivalent to ∂m2(ψ)

∂ϕ < 0. Put another way, a re-
quirement of a negative anomalous dimension is equivalent to
requiring heavy states to decrease in mass as the field ϕ moves
towards the asymptotic large volume regime of moduli space.
This is interesting as it shows that, within this context, the
physics of the distance conjecture can be derived from a simple
statement about the sign of anomalous dimensions of mixed
double trace operators.

Interestingly, this condition also addresses the puzzle
raised above with the refined distance conjecture. Under the re-
definition ϕ→ −ϕ, the sign of both structure coefficients Cϕψψ
and Cϕϕϕ (or alternatively Cϕaa) change signs. Although in
this Lagrangian, the heavy tower of states all now increase
in mass for ∆ϕ > 0, as we are headed towards the centre of
moduli space, the anomalous dimensions remain negative as
they are sensitive to the product of the signs of the structure
coefficients. So the formulation in terms of signs of anoma-
lous dimensions appears more fundamental as it captures the
correct behaviour in this regime as well.

5.3. The Presence of the Tower of States
We therefore see that our hypothetical constraint on the sign
of anomalous dimensions for mixed double trace operators cap-
tures some of the correct behaviour associated to the swamp-
land distance conjecture. However, the swampland distance
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conjecture also has a first element - the existence of towers of
heavy states that becomes light for transPlanckian field dis-
placements. The above constraints on anomalous dimensions
constrain the behaviour of the heavy states – assuming they
exist. However, can CFT arguments be used to understand the
existence of this tower of states?

What does it mean for a tower of heavy states to exist?
This can be formulated in terms of the density of operators by
conformal dimension, ρ(∆). LVS has a small number of single-
trace primary states with ∆ ∼ O(1), as well as other states are
built up from these as double-trace (or higher) operators. For
conformal dimensions ∆ . V5/6 the spectrum of states (on the
AdS side) consists of quantum field theory on AdS space, and is
built up as the Fock space of states. The analogous behaviour
on the CFT side tells us that for ∆ . V5/6, ρ(∆) grows as for
the Fock space of the Generalised Free Field Theory.

However, once ∆ & V5/6, the operators dual to the tower
of KK modes enter the spectrum, and for ∆ & V the operators
dual to perturbative string states enter the spectrum. These
states are still far below the Planck scale (as ms �MP in the
asymptotic large volume regime), and indeed it is not until ∆ &
V3/2 that the CFT will enter the regime in which operators
dual to black hole states appear as part of the spectrum. As
the number of KK modes grows power-law with energy and
the number of string states grows exponentially, this leads to a
qualitative change in the functional form of ρ(∆) for ∆ & V5/6.

So – in the context of LVS – the statement that a tower
of heavy states exists is equivalent to the statement that the
growth in operator density increases dramatically beyond a
certain ∆crit � ∆BH , where ∆BH is the conformal dimension
corresponding to operators dual to black hole states, in a way
that no longer can be described by the QFT of single particles
on AdS4 space.

Such statements about the spectrum of operator densities
have been proven in the context of 2d CFTs in the context of
the idea of string universality [69] and analogous statements
may also hold for higher-dimensional CFTs (see [70] for some
work in this direction).

6. OUTLOOK
Moduli stabilisation is central for reconciling String Theory
with experimental observations. Many of the known construc-
tions, however, rely on a series of approximations which may
not fully be justified and often involve complicated ingredients
that have to be added in ‘by hand’. In this paper, we have ar-
gued that the study of CFT duals to the low energy sector of
weakly coupled AdS vacua may help to shed some light on the
validity of such constructions, in a way that is complementary
to standard arguments. Furthermore, this fits in the recent line
of developments concerning the Swampland program, a tenta-
tive search of general criteria which low energy theories must
satisfy in order to be compatible with Quantum Gravity.

Interestingly, one quantity - the sign of the mixed anoma-
lous dimension γϕa(0, `), corresponding to double trace op-
erators built out of two non-identical primaries - appears to
correlate well with swampland constraints on the effective low-
energy Lagrangians for moduli-stabilised string vacua. In par-
ticular, the requirement that this takes a negative sign appears
to reproduce various swampland constraints, specifically the
axion WGC and the no transPlanckian axion decay constant

conjecture in the case of LVS and for the related methods of
perturbative stabilisation. For the qualitatively different sce-
narios of KKLT and racetrack stabilisation, the signs are also
negative precisely in the region of validity of the single in-
stanton approximation. This analysis has also revealed that
LVS is rather close to a ‘critical’ point where the sign of the
anomalous dimension would change. Furthermore, the same
requirement seems to generically relate to the distance conjec-
ture in the large volume limit. In the context of LVS, this is
also connected to a possible puzzle within the refined version
of the conjecture pointed out in 5.1. We therefore conjecture
this behaviour to be a general feature of moduli stabilisation
scenarios (and/or string compactifications), while emphasising
the uncertainties that exist on this topic.

CFT methods offer promise for rigorous formulations for
swampland constraints on semi-realistic string vacua, at least
for the first step of AdS vacua. This paper has made some
exploratory steps in this direction. However, there remain some
unclear points which require further investigation:

• Our focus has been on contributions and anomalous di-
mensions arising from scalar exchange. Thus gravity ap-
pears to be left out, in the sense that graviton exchange
contributions to the Mellin amplitudes will always dom-
inate at large enough ` as ∆gµnu = 3. One potential
approach would be to compute γ(0, `) at finite values
of ` and verify that the sign is negative for some in-
termediate finite value `f ≥ 2, but computations away
from the asymptotic limit ` � 1 are technically more
complicated.

• For these studied cases of moduli stabilisation, the neg-
ativity of the mixed anomalous dimensions arises from
exchange of a scalar modulus that corresponds to a vol-
ume modulus. Morally, this mode corresponds to a di-
mensional reduced 10d graviton, and so ‘ought’ to lead
to negative anomalous dimensions as gravity is univer-
sally attractive. It would be interesting to know whether
this extends to more general scenarios, and also under
what conditions negativity of the mixed anomalous di-
mensions occur in arbitrary CFTs.

• Anomalous dimensions of double trace operators can be
interpreted as the binding energies of two-particle states
on AdS. One might wonder whether this could provide
a more transparent interpretation for the negativity of
γϕa(0, `).

• It would be interesting if the low-spin behaviour of
anomalous dimensions - namely γ(0, 0) and γ(0, 1) -
could be used to infer something about the quartic ver-
tices, perhaps with some additional assumptions. From
a Minkowski perspective, this would be equivalent to
asking whether anything can be said on the first two
coefficients in the s expansion of a forward scattering
amplitude.

Aside from these issues, our work can ideally be expanded in
two different kinds of directions, corresponding to the trade-off
between applicability and rigor that is typical of swampland
conjectures. The first possibility consists in testing our specu-
lative criterium for other classes of phenomenologically inter-
esting compactifications, such as type IIA or fibred models. At
the other end of the spectrum, it would be useful to investigate
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precisely to what extent the well-established bounds discussed
in 3.4.1 carry implications for low energy theories of Quantum
Gravity on AdS.
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