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Abstract
We introduce the novel phenomena of CP-violating inflation in the frameworks of a 3-Higgs doublet model
where the inflaton doublets have a non-minimal coupling to gravity. We allow for this coupling to be
complex, thereby introducing CP-violation - a necessary source of the baryon asymmetry - in the inflaton
couplings. We investigate the inflationary dynamics of such a framework and the inflaton decay in the
reheating phase. We discuss how the CP-violation of the model is imprinted on the particle asymmetries.
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1. INTRODUCTION
The Standard Model (SM) of particle physics has been extensively tested and is in great agreement with experimental data, with its
last missing particle – the Higgs boson – discovered by ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC)
[1, 2]. Although the properties of the observed scalar are in agreement with those of the SM-Higgs boson, it may just be one member
of an extended scalar sector. Even though so far no signs of new physics have been detected, it is well understood that the SM of
particle physics is incomplete.

Cosmological and astrophysical observations imply a large dark matter (DM) component in the energy budget of the universe.
Within the particle physics setting, this would be a particle which is stable on cosmological time scales, cold, non-baryonic, neutral
and weakly interacting [3]. A particle with such characteristics does not exist in the SM. Another shortcoming of the SM is the
lack of an explanation for the origin of the observed matter-antimatter asymmetry in the universe. One of the most promising
baryogenesis scenarios is electroweak baryogenesis (EWBG) [4], which produces the baryon excess during the electroweak phase
transition (EWPT). Although the SM in principle contains all required ingredients for EWBG, it is unable to explain the observed
baryon excess due to its insufficient amount of CP-violation [5, 6, 7] and the lack of a first-order phase transition [8].

Furthermore, in its current form, the SM fails to incorporate inflation in a satisfactory manner. Inflation is a well-motivated
theory predicting a period of exponential expansion in the early universe which explains the generation of primordial density
fluctuations seeding structure formation, flatness, homogeneity and isotropy of the universe [9, 10, 11, 12]. The simplest models of
inflation in best agreement with observations are those driven by a scalar field, the inflaton, with a standard kinetic term, slowly
rolling down its smooth potential. At the end of inflation, the inflaton which naturally is assumed to have couplings with the SM-
Higgs, dumps its energy into the SM bath during the reheating process which populates the universe with SM particles.

Scalars with non-minimal couplings to gravity are well-motivated inflaton candidates since they acquire fluctuations propor-
tional to the inflationary scale and can drive the inflation process in the early universe, as in the Higgs-inflation model [13] where
the SM-Higgs plays the role of the inflaton, and s-inflation models [14, 15] where the SM is extended by a singlet scalar. Extensive
studies have been carried out in simple one singlet or one doublet scalar extensions of the SM (see e.g. [16, 17, 18, 19] and references
therein). These models, however, by construction can only partly provide a solution to the main drawbacks of the SM. For example,
to incorporate both CP-violation and DM into the model one has to go beyond simple scalar extensions of the SM [20]; see also e.g.
[21, 22, 23, 24, 25, 26, 27].

It is therefore theoretically appealing to have a more coherent setting where different motivations of beyond SM (BSM) frame-
works could be simultaneously investigated. For example, in non-minimal Higgs frameworks with conserved discrete symme-
tries one can accommodate stabilised DM candidates. Moreover, the extended scalar potential could provide new sources of CP-
violation and accommodate a strong first order phase transition [28]. Collider searches can constrain these model frameworks by
excluding or discovering the existence of the spectrum of new states.

Here we introduce a model where a source of CP-violation originates from the couplings of the inflation. Through the process
of reheating this is transmitted to an asymmetry within the SM and can furthermore seed the generation of an excess of matter over
antimatter during the evolution of the early universe. We describe these dynamics in the context of a Z2 symmetric 3-Higgs Doublet
Model (3HDM) with a CP-violating extended dark sector, which also provides a viable DM candidate, new sources of CP-violation
and a strong first-order EWPT [21, 20, 22, 23, 24, 25, 26, 27]. We study the inflationary dynamics of this set-up and outline its main
consequences. We point out that the inflationary potential allows for very small scalar couplings of O(10−10) in agreement with
all theoretical and experimental bounds, which consequently lead to a non-minimal coupling of ξ ' 0.1. Different values of the
CP-violating angles then comfortably yield the conformal value of |ξ| = 1/6. The thorough analysis of EWBG and DM observables
as well as a phenomenological analysis towards LHC searches of the model are covered in our upcoming publication.
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2. THE SCALAR POTENTIAL
2.1. General definitions
A 3HDM scalar potential which is symmetric under a group G of phase rotations, can be written as the sum of two parts: V0 with
terms symmetric under any phase rotation, and VG with terms symmetric under G [29, 30]. As a result, a Z2-symmetric 3HDM can
be written as1:

V = V0 + VZ2 , (1)

V0 = −µ2
1(φ

†
1 φ1)− µ2

2(φ
†
2 φ2)− µ2

3(φ
†
3 φ3) + λ11(φ

†
1 φ1)

2 + λ22(φ
†
2 φ2)

2 + λ33(φ
†
3 φ3)

2

+λ12(φ
†
1 φ1)(φ

†
2 φ2) + λ23(φ

†
2 φ2)(φ

†
3 φ3) + λ31(φ

†
3 φ3)(φ

†
1 φ1) + λ′12(φ

†
1 φ2)(φ

†
2 φ1) + λ′23(φ

†
2 φ3)(φ

†
3 φ2) + λ′31(φ

†
3 φ1)(φ

†
1 φ3),

VZ2 = −µ2
12(φ

†
1 φ2) + λ1(φ

†
1 φ2)

2 + λ2(φ
†
2 φ3)

2 + λ3(φ
†
3 φ1)

2 + h.c.

where the three Higgs doublets, φ1, φ2, φ3, transform under the Z2 group, respectively, as

gZ2 = diag (−1,−1,+1) . (2)

The parameters of the V0 part of the potential are real by construction. We allow for the parameters of VZ2 to be complex, using the
following notation throughout the paper

λj = |λj| ei θj (j = 1, 2, 3), and µ2
12 = |µ2

12| ei θ12 . (3)

The composition of the doublets is as follows:

φ1 =

(
H+

1
H1+iA1√

2

)
, φ2 =

(
H+

2
H2+iA2√

2

)
, φ3 =

(
G+

v+h+iG0√
2

)
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where φ1 and φ2 are the Z2-odd inert doublets, 〈φ1〉 = 〈φ2〉 = 0, and φ3 is the one Z2-even active doublet, which at low energy
attains a vacuum expectation value (VEV) 〈φ3〉 = v/

√
2 6= 0. The doublet φ3 plays the role of the SM Higgs doublet, with h being

the SM Higgs boson and G±, G0 the would-be Goldstone bosons. Note that according to the Z2 generator in Eq. (2) the symmetry
of the potential is respected by the vacuum (0, 0, v/

√
2). In this paper we consider the scenario where the components of the inert

doublets act as inflation candidates and reheat the universe at the end of inflation through their interactions with the SM-Higgs
and gauge bosons. Note that at the scales relevant for inflation we can take the VEV of the active doublet to be zero, 〈φ3〉 = 0.

Furthermore, CP-violation is only introduced in the inert sector which is forbidden from mixing with the active sector by the
conservation of the Z2 symmetry. As a result, the amount of CP-violation is not limited by electric dipole moments [21]. The lightest
particle amongst the CP-mixed neutral fields from the inert doublets is a viable DM candidate and stable due to the unbroken Z2
symmetry. In this paper, we focus on the inflationary dynamics of the model and shall not discuss DM implications of the model
any further.

2.2. Potential for the inflaton
We start by rewriting the doublets in the unitary gauge and ignore the charged scalars (since they do not affect the inflationary
dynamics).

φ1 =
1√
2

(
0

h1 + iη1

)
, φ2 =

1√
2

(
0

h2 + iη2

)
, φ3 =

1√
2

(
0

h3

)
. (5)

The action of the model in the Jordan frame is

SJ =
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,

where R is the Ricci scalar, Mpl is the reduced Planck mass and the parameters ξi are dimensionless couplings of the scalar doublets
to gravity. Note that, in principle, ξ4 could be a complex parameter for which we use the notation ξ4 = |ξ4| eiθ4 .

In Eq. (6) the covariant derivative, Dµ, contains couplings of the scalars with the gauge bosons. However, for the dynamics
during the inflation, the covariant derivative is reduced to the normal derivative Dµ → ∂µ. The minus sign in the kinetic terms
follows the metric convention of (−,+,+,+).

1We ignore additional Z2-symmetric terms that can be added to the potential, e.g., (φ†
3 φ1)(φ†

2 φ3), (φ†
1 φ2)(φ†

3 φ3), (φ†
1 φ2)(φ†

1 φ1) and (φ†
1 φ2)(φ†

2 φ2), as they do not change
the phenomenology of the model [23].
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Since we identify the two inert doublets with inflaton, we assume that the energy density of φ3 is sub-dominant during inflation.
Therefore, the part of the potential relevant for inflation is
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Due to local SU(2) invariance, we can rotate away one of the CP-odd fields, say η2. Such a transformation is equivalent to taking
the η2 → 0 limit, and we assume this limit to be taken when writing the fields in terms of components in Eq. (5).

To facilitate the analysis, we apply a conformal transformation from the Jordan frame, which contains terms with scalar-gravity
quadratic couplings, to the Einstein frame with no explicit couplings to gravity [31]. Physical observables are invariant under this
frame transformation. The two frames are equivalent after the end of inflation when the transformation parameter equals unity.
The action in the Einstein frame can be written as
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]

, (8)

where Ṽ = V/Ω4 is the potential in the Einstein frame following the conformal transformation
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where ϕk = h1, h2, η1, and the transformation parameter
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using the shorthand notation cθk
= cos θk and sθk

= sin θk throughout the paper.
The prefactor Gij in Eq. (9) leads to mixed kinetic terms. We introduce the reparametrisation
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which reduces the kinetic terms to the diagonal form
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To write the potential in the Einstein frame, we keep only terms in the potential in Eq. (7) which are quartic in h1,2 and η1. This
reduces the potential to

Ṽ ≈ 1
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where θ1 is the CP-violating phase of the λ1 parameter.
Further, we introduce the reparametrisation η1 = β1 h1 and h2 = β2 h1 with β1, β2 as field dependent values, to rewrite the

potential as
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Using this reparametrisation, one can also simplify the Ω2 parameter in Eq. (10) as

Ω2 = 1 +

(
ξ1

M2
pl
(1 + β2

1) +
ξ2

M2
pl

β2
2 +

2 |ξ4|
M2

pl
β2(cθ4 + β1sθ4 )

)
h2

1 ≡ 1 +
B

M2
pl

h2
1. (15)

From Eq. (11), recall that Ω2 = exp(Ã) using the shorthand notation Ã =
√

2
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A
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. One can then write the field h1 in terms of the

reparametrised field Ã
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Therefore, expressing h2
1 and Ω2 in terms of Ã allows us to write the potential in Eq. (14) in the form

Ṽ ∼ (1− e−Ã)2X(β1, β2). (17)
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FIGURE 1: The inflationary potential for different values of θ1 and θ4 (all λi ∼ 0.001).

We will be interested in the effect of the non-minimal coupling |ξ4| and the associated phase θ4. Therefore, we will set ξ1 =
ξ2 = 0 and assume that the initial field values are such that Ω2 > 0 is guaranteed. Therefore, with these assumptions, the potential
in Eq. (14) can be written as

Ṽ =

( M2
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)2 (
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where
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2
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Following the procedure in [16, 32], to find the direction of inflation, we minimise the X(β1, β2) function with respect to β1 and β2
to find the form of the X function independent of β1 and β2 with only θ1 and θ4 as variables (see [32] for detailed derivation):

X(θ1, θ4) =
1
4
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√
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1
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√
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3. INFLATIONARY DYNAMICS
With the procedure used in the previous section, the dynamics is essentially that of a single field inflation. The full inflationary
potential in Eq. (18) can be written as

Ṽ =

( M2
pl

2 |ξ4|

)2 (
1− e−Ã

)2
X(θ1, θ4) (21)

Figure 1 shows the inflationary potential for different values of θ1 and θ4 for a given value of λi ∼ 0.001. Note that the potential is
almost flat at high field values which ensures a slow roll inflation.

For the usual slow roll parameters in this case the function X is irrelevant, since it cancels in the expressions for ε and η, which
are
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(
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dA2 =
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For field values A� Mpl (or equivalently Ã� 1), both parameters ε, η � 1 which satisfies the slow roll condition. Inflation ends
when ε ' 1. To calculate the values of A at the beginning and end of inflation, Ai and A f respectively, one needs to calculate the
number of e-folds Ne, i.e. the number of times the universe expanded by e times its own size. Ne is calculated to be
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1

M2
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Ṽ
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]
, (23)

where Ṽ′ = dṼ
dA and Ai (Ãi) is the value of A (Ã) at the beginning of inflation and A f (Ã f ) is the value of A (Ã) at the end of the

inflation. Since inflation ends when ε ' 1, one can calculate A f , which yields:

eÃ f = exp

(√
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)
' 2.1547 ⇒ Ã f =

√
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' 0.7676 . (24)

To calculate Ai, one could plug in the A f value into Eq. (23) assuming Ne = 60, which results in

3
4

[
−Ãi + eÃi

]
− 1.0403 = 60, ⇒ Ãi =

√
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≈ 4.4524 (25)
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FIGURE 2: The slow roll parameters: the number of e-folds Ne (left), spectral index ns (center) and tensor to scalar ratio r (right) as
a function of Ã with the grid-lines highlighting the 55 < Ne < 65 values.

At this point we can also check the field values in terms of the original field h1 using Eq. (16). This gives

h1 f =
1.85× 1018√

|ξ4| β2(cθ4 + β1 sθ4 )
, h1i =

1.59× 1019√
|ξ4| β2(cθ4 + β1 sθ4 )

. (26)

Having fixed Ne to 60, and calculated the A field value at the start of inflation, we can derive the scalar power spectrum, Ps, the
tensor to scalar ratio r and the spectral index ns as follows:

Ps =
1

12 π2 M6
pl

(
Ṽ
)3(

Ṽ′
)2 =

(
(1− eÃ)4

128 π2 e2Ã

)
X(θ1, θ4)

|ξ4|2
= 5.565× X(θ1, θ4)

|ξ4|2
, (27)

r = 16 ε = 0.00296, (28)

ns = 1− 6ε + 2η = 0.9678, (29)

where Ṽ′ is the derivative of Ṽ with respect to A and both Ṽ and Ṽ′ are calculated at the Ai. Figure 2 shows the slow roll parameters
Ne, ns and r with respect to Ã with the grid-lines highlighting the 55 < Ne < 65 values. We show the inflationary parameters over
a range of Ne, since there is no reason for Ne to be precisely 60. The values of r and ns are well within the Plank bounds of
ns = 0.9677± 0.0060 at 1σ level and r < 0.11 at 95% confidence level [33]. Note that the spectral index and the tensor to scalar
ratio are in agreement with the Planck bounds over the full range of Ne. Figure 3 shows the 1σ and 2σ regions allowed by Planck
observations in the r-ns plane and the theoretical predictions of our framework for Ne values of 55 and 65.
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FIGURE 3: The 1σ and 2σ regions for ns and r from Planck observation compared to the theoretical prediction of our framework.

Observations from WMAP7 [34] constrain the scalar power spectrum which put a bound on the |ξ4| coupling and angles θ1, θ4,

Ps = (2.430± 0.091)× 10−9 = 5.565× X(θ1, θ4)

|ξ4|2
. (30)

In the left panel of Figure 4, we show Ps values for the fixed θ1 = π/3 angle and varying values of |ξ4| and θ4 up to 3σ standard
deviation from the central value in Eq. (30). In the right panel, we fix Ps to the WMAP7 central value for fixed values of λi ∼ 0.001
to get

|ξ4| = 4.785× 104
√

X(θ1, θ4) (31)
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FIGURE 4: Left panel: Ps values for the fixed θ1 = π/3 angle and varying values of |ξ4| and θ4 up to 3σ standard deviation from the
observed central value. Right panel: Contours of |ξ4| in the θ1-θ4 plane which lead to Ps central values (all λi ∼ O(10−10)).

and show contours of |ξ4| for varying values of θ1 and θ4. Note that every point in the plot yields the exact Ps central value.
This is a very important feature of our framework. To satisfy the bounds on the scalar power spectrum, the function X(θ1, θ4)

allows for a wide range of ξ4 values as shown in Figure 4. This is in contrast to the Higgs-inflation models where Ps ∝ λ/ξ2

with λ the Higgs self-coupling which is fixed to be ∼ 0.12 at the electroweak scale. Thus, for Ps to agree with observations at the
inflationary scale, ξ will have to be very large O(104). In our set-up, a combination of parameters λ1, λ11, λ22, λ12, λ′12 appears in
the X(θ1, θ4) function. The only constraint limiting these parameters is the stability of the potential requiring

λii > 0, λij + λ′ij > −2
√

λiiλjj, |λi| ≤ |λii|, |λij|, |λ′ij|, i 6= j = 1, 2, 3 , (32)

which allows for very small values of λi ∼ O(10−10) which, in turn, allows for much smaller values of |ξ4| of order 0.1. Different
values of the CP-violating angles θ1 and θ4 could then comfortably yield the conformal value of |ξ| = 1/6.

4. REHEATING AND INFLATON DECAY
At the end of inflation, the energy stored in the inflaton disperses as the inflaton decays/annihilates into the SM particles through
processes mediated by the SM-Higgs and gauge bosons in our case, during the so-called reheating phase [35]. To dissect the
reheating phase of our CP-violating inflationary dynamics, we make use of the conformal transformation and field redefinitions in
Eqs. (9-15) to write (

dA
dh1

)2
=

1
Ω2 +

1
Ω4

24
M2

pl
|ξ4|2β2

2(cθ4 + β1sθ4 )
2h2

1 , (33)

or simply

dÃ
dh̃1

=

√
1 + ξ̂4(1 + 6ξ̂4) h̃2

1

1 + ξ̂4h̃2
1

, (34)

using the shorthand notations

h̃1 =
h1

Mpl
, ξ̂4 = 2 |ξ4|β2(cθ4 + β1sθ4 ) , and Ã =

√
2
3

A
Mpl

, (35)

as defined before. The exact solution to Eq.(34) after integration (whose analytical form is not particularly enlightening) is shown
in Figure 5 represented by the solid blue curve. We find it instructive to identify two distinct regions as

Ã ≈
{

h̃1 for Ã < Ãcr ,

log
(
Ω2) for Ã > Ãcr ,

(36)

where at the end of inflation (at low field values), the field h̃1 and its reparametrised counterpart in the Einstein frame Ã are
equivalent. This behaviour is represented by the dashed red line in Figure 5. During inflation (at high field values), the Ã field is
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FIGURE 5: The reparametrised field Ã =
√

2
3 A/Mpl with respect to the h̃1 = h1/Mpl field. Note that at low field values (end of

inflation) Ã and h̃1 coincide as expected.

defined as log(Ω2) as discussed in Eq. (11), which is shown by the dashed green curve in Figure 5. The low and high field regions
are separated by Ãcr, at the intersection of the dashed red and green curves where h̃1 = log(Ω2) and is calculated to be

h̃1 = log
(

1 + ξ̂4 h̃2
1

)
≈ ξ̂4 h̃2

1 ⇒ h̃1 =
1
ξ̂4
≡ Ãcr , (37)

using the assumption of ξ̂4 � 1.
Another important intersection is the Ã ∼ 1 point, above which inflation occurs. In the intermediate region where 1 > Ã >

Ãcr = 1/ξ̂4, the field Ã can be approximated as ξ̂4h̃2
1 which is represented by the dashed magenta curve in Figure 5. In this region,

which is relevant for reheating, the inflationary potential in Eq. (21) can be approximated by a quadratic potential

Ṽ ≈
( M2

pl

2 |ξ4|

)2

X(θ1, θ4) Ã2 ≡ 1
2

ω2 Ã2 with ω =
M2

pl

√
X(θ1, θ4)

√
2 |ξ4|

, (38)

which is a simple harmonic oscillator potential in which the inflaton oscillates rapidly with frequency ω which could be thought
of as the “inflaton mass”. Since the effective inflaton mass is non-zero in this region, the exponential expansion of the universe
proceeds as in the matter domination era where the Friedman equation can be written as

3 H2(t) =
1
2

˙̃A2(t) +
1
2

ω2

Mpl
2 Ã2(t), where H(t) =

ȧ(t)
a(t)

=
2
3t

and a ∝ t2/3 , (39)

where t is the physical time, H is the Hubble parameter, a is the scale factor and ω acting as a mass parameter for this oscillatory
phase. This equation can be solved for ω � H (when the change of the scale factor is small during one oscillation) as

Ã = Ã0(t) cos(ωt) , (40)

where Ã0(t) is the amplitude of the background inflaton field oscillations, which decreases with time due to particle creation and
the expansion of the universe where

Ã0 =

√
2
3

A0
Mpl

=
8 |ξ4|√

3 Mpl
√

X(θ1, θ4)

1
t

. (41)

The reheating phase ends at time tcr when the amplitude of the oscillations Ã0 crosses Ãcr which gives us the crossing time as

tcr =
8
√

2 Mpl |ξ4|β2(cθ4 + β1sθ4 )√
3 ω

=
4
√

2 Mpl ξ̂4√
3 ω

. (42)

At later times, when Ã < Ãcr, the universe enters the radiation-dominated era. The potential for the inflaton field no longer
contains an essential mass parameter. The energy of the inflaton zero mode is drained by the creation of SM-Higgs and gauge
bosons through their direct coupling to the inflaton filed. These couplings are relatively large and lead to a rapid energy transfer
from the coherent oscillations of the inflaton to relativistic SM particles. If this energy conversion is instantaneous, a lower bound
on the reheating temperature is estimated to be Treh > 1.5× 1013 GeV [13, 36].
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4.1. Inflaton decay
As discussed before, the inflaton decays into the W, Z and the SM-Higgs bosons through its direct couplings. In the background
approximation in Eq. (40) the inflaton field acts as an external source of these SM fields with “varying-with-time masses”. Therefore,
although these particles do not have a physical mass at this time, one can define an effective mass arising from inflaton oscillations
for them. Using the same assumption as before, where ω � H and the amplitude is constant over one oscillation period, we define
effective mass terms for W, Z and the Higgs bosons. Recall that during the reheating phase, h2

1 can be approximated as M2
pl Ã/ξ̂4

as shown in Eq. (37).
The coupling of the inflaton to W and Z bosons is 1

4 g2
2 h2

1W2 and 1
8 (g2

1 + g2
2) h2

1Z2, respectively. Written in terms of Ã, the
effective masses for the W and Z bosons are calculated to be:

m2
W =

g2
2 M2

pl

4 ξ̂4
Ã, m2

Z =
(g2

1 + g2
2) M2

pl

4 ξ̂4
Ã , (43)

where g1 and g2 are the U(1) and SU(2) gauge couplings, respectively, and ξ̂4 is defined in Eq. (35). The inflaton coupling to Higgs
is through the potential in Eq. (1) expanded in terms of all fields in Eq. (5), which allows us to define an effective mass term for the
SM-like Higgs boson, h3, as

m2
h3

=
λ123

2
h2

1 =
λ123

2

M2
pl

ξ̂4
Ã , (44)

where
λ123 = β2

2(λ23 + λ′23) + (1 + β2
1)(λ31 + λ′31) + 2β2

2λ2cθ2 − 2(β2
1 − 1)λ3cθ3 − 4β1λ3sθ3 , (45)

and θi being the phase of the parameter λi as described in Eq. (3). Note that the masses in Eqs.(43) and (44) are not the conventional
masses obtained from spontaneous symmetry breaking. Instead they are effective masses defined based on the interactions of these
fields with the inflaton written in terms of the reparametrised field Ã.

Due to the large value of the weak couplings, g1 and g2 of the W, Z bosons to the inflaton, they are heavy and non-relativistic.
If λ123 is large, the Higgs boson will also be produced non-relativistically. Therefore, their production does not change the equation
of state from the non-relativistic matter domination to radiation domination. This transition occurs later on with the creation of the
relativistic secondary particles, i.e. light fermions, as a result of the decay or scattering of the heavy particles, the Higgs and W, Z
bosons.

As long as the inflaton mass, ω, is smaller than the gauge/scalar bosons in Eqs. (43, 44) for Ã > Ãcr, creation of the bosons
is possible only when the inflaton field crosses zero (when Ã(t) < Ãcr). During each zero crossing some gauge/scalar bosons are
created. In the beginning, when the number densities of the produced W, Z and Higgs bosons, nW , nZ and nh respectively, is low the
creation rate is constant. As a result, the created bosons are non-relativistic and decay into light SM fermions (which are relativistic).
However, the decay rate decreases with time as the amplitude of the inflaton oscillations decreases. No significant energy transfer
from the inflaton to radiation has taken place so far. As the decay rate becomes smaller than the production rate, generation of the
particles, which is enhanced by the stochastic parametric resonance, accelerates and raises the concentration of the gauge/scalar
bosons. The energy transfer into the light SM fermions proceeds now mainly via WW/ZZ → f f̄ annihilation (their decays become
sub-dominant channels of fermion production) while Higgs can only produce fermions through decays. The annihilation process
rapidly transfers all the energy into radiation, resulting in the transition from the matter domination expansion with a ∝ t2/3 to the
radiation domination expansion with a ∝ t1/2.

The production of W and Higgs bosons in the linear and resonance regions are [37, 38, 39]:

d(nW a3)

dt
=


P

2π3 ωK3
1a3, (linear),

2 a3 ωQ nW , (resonance),

d(nha3)

dt
=


P

2π3 ωK3
2a3, (linear),

2a3ωQnh, (resonance),
(46)

where P and Q are numerical factors with P ≈ 0.0455 and Q ≈ 0.045. The created particles are essentially non-relativistic. For
concentrations of other gauge bosons we have the obvious relations nW+ = nW− , nZ = nW+/ cos2 θW , where θW is the weak
mixing angle. K1 and K2 have dimensions of energy and are dependent on the respective mass terms with:

K3
1 = ω m2

W(ti) =
g2

2 M4
pl

2
√

2 ξ̂2
4

β2(cθ4 + β1sθ4 )
√

X(θ1, θ4) Ã0(ti), (47)

K3
2 = ω m2

h3
(ti) =

λ123 M4
pl√

2 ξ̂2
4

β2(cθ4 + β1sθ4 )
√

X(θ1, θ4) Ã0(ti), (48)

where ti is the instant when the inflaton field crosses zero, i.e. Ã(ti) = 0. Note that the inflaton can decay into W, Z and Higgs
bosons only in the vicinity of this point, when its effective mass ω, is much larger than those of the W, Z and Higgs bosons.
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5. SCALAR ASYMMETRIES
Here we briefly discuss how the CP asymmetry originating from the non-minimal coupling, is transferred to the SM degrees of
freedom. For this discussion, let’s focus on the neutral components of the φ1 doublets acquiring an initial non-vanishing expectation
value at the exit from inflaton. We write the field fluctuations around the initial conditions as{

φ1 → φ1 − a1ei α

φ†
1 → φ∗1 − a1e−i α ,

{
φ2 → φ2 − a2
φ†

2 → φ∗2 − a2
,

{
φ3 → φ3 − a3
φ†

3 → φ∗3 − a3
. (49)

The phase α here is related to the CP-violating phases of inflation. Note that at the end of inflation the h1 field has taken a value
according to Eq. (26) which is dependant on the inflationary dynamics, namely θ4, β1 and β2 which are dependant on θ1. Since h1
is the real part of the complex field φ1, its value is what feeds the a1 cos α component of fluctuations in Eq. (49). The imaginary part
of φ1, represented by η1, takes a value proportional to h1 and feeds the a1 sin α component of the field fluctuations. Recall that one
can obtain the values of β1 and β2 for any given value of θ1 and θ4. However, to keep the present discussion more transparent, we
retain a generic phase α here.

To discuss the consequences of this complex phase, we now assume instant reheating. Since the field φ3 is light with respect to
the inflaton degrees of freedom, we expect the latter to quickly decay to φ3. The asymmetry arising from the values of the fields in
Eq. (49) will manifest in creation of unequal number of φ3 and φ∗3 quanta as follows.

From the potential in Eq. (1), the couplings contributing to the decays of{
φ1 → φ3φ3 ∝ 2a1λ3 ei(α+θ3)

φ∗1 → φ∗3 φ∗3 ∝ 2a1λ3 e−i(α+θ3)
,

{
φ2 → φ3φ3 ∝ 2a2λ2 eiθ2

φ∗2 → φ∗3 φ∗3 ∝ 2a2λ2 e−iθ2
. (50)

Such decay processes are CP-violating and result in unequal number of φ3 and φ∗3 states. Consequently, the relative asymmetries
A1

CP and A2
CP in the decay rates are

A1
CP ∼ 8 a2

1 λ2
3 sin 2(α + θ3) , A2

CP ∼ 8 a2
2 λ2

2 sin 2θ2 . (51)

This asymmetry in the scalar sector is then transferred to the fermion sector through the couplings of the Higgs field (h3 contained
in the φ3 doublet) with the fermions, as discussed in the previous section. For example, assuming the existence of right-handed
neutrinos, the Yukawa interactions between neutrinos and φ3 will generate an asymmetry between νL and ν̄R, which would be
further translated into baryon asymmetry by the electroweak sphalerons.

6. CONCLUSION AND OUTLOOK
Scalar fields which have non-minimal couplings to gravity are well-motivated inflaton candidates. Paradigmatic examples are the
Higgs-inflation [13] and s-inflation models [15]. In this paper we have considered a scenario where several non-minimally coupled
scalars contribute to the inflationary dynamics. In particular we investigated a model where these scalars are electroweak doublets
and therefore generalize the Higgs inflation. We focused on a setting where the dominant non-minimal coupling is allowed to be
complex and investigated the effect that this would have on CP-violation in our universe. We determined the inflationary dynamics
in the regime where the model essentially conforms to the predictions of single field inflation. The essential difference is that the
inflaton obtains a non-zero phase representing possible source of CP-violation for subsequent post-inflationary evolution. At the
end of inflation, the inflaton particle which is naturally assumed to have couplings with the SM Higgs, dumps its energy into
the SM particle bath through the process of reheating, which populates the universe with the SM particles. We sketched how the
complex value of the inflaton field leads to an asymmetry in the scalar sector decays, and how this asymmetry will further be
transmitted to the fermion sector. A more detailed analysis of our framework, including multi-field dynamics during inflation,
further details of reheating and subsequent particle decays and their effects on the generation of baryon asymmetry are covered in
our upcoming publication.
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