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Implementation details of the Chebyshev accelerated

sampler

The Chebyshev accelerated sampler requires estimates of the extreme eigenvalues of
the operator M−1A that acts on the error in mean and variance of the samples. We
obtain these estimates via a conjugate-gradient (CG) algorithm at no significant increase
in computational cost (Meurant, 2006; Scales, 1989; Parker and Fox, 2012). The CG
algorithm itself may be adapted to sample from normal distributions (Fox, 2008; Parker
and Fox, 2012). Thus, in addition to generating eigenvalue estimates, the Chebyshev
SSOR may also be further accelerated (significantly) by initializing with a CG sample
that is approximately distributed as N(0,A−1), at no increase in computational cost.
These ideas are discussed in this supplementary material, as well as explicit details for
implementing the Chebyshev SSOR sampler.

Acceleration by CG

The CG algorithm is an algorithm that is direct (‘perfect’ in the language of statistics) in
exact arithmetic (Nocedal and Wright, 2000). The CG solver and corresponding sampler
are depicted in panels E and F of Figure 1. In the figure, the direct nature of CG is
shown by convergence of the solver in a finite number of steps, and the sampler aligning
with directions that are independent under the target distribution. Unlike Chebyshev
acceleration, the CG algorithm does not correspond to acceleration by a fixed polynomial;
instead, the polynomial depends on residuals, and is outside the scope of this paper. To
further illustrate these ideas, for the small example (n = 100) over a 10 × 10 lattice
in section 6.1, two implementations of a CG solver were applied to solve Ax = b: CG
(un-preconditioned), and CG-SSOR (i.e., CG preconditioned by SSOR) (Table 3).
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Acceleration by initialization and relaxation parameter

In addition to generating estimates of the eigenvalues of M−1A required by the Cheby-
shev accelerated SSOR sampler, the sampler may also be further accelerated (signif-
icantly) by initializing with a CG sample y(0), at no increase in computational cost.
Acceleration by initialization follows from the specification of the error reduction given
in Corollary 6,

Var(y
(k)

) = A−1
− Pk(M

−1A)(A−1
−Var(y

(0)
))Pk(M

−1A)T .

Thus, the sampler is accelerated, by a constant factor, when Var(y(0)) ≈ A−1, in par-

ticular when (A−1
−Var(y

(0)
)) lies in the eigenspaces of Pk(M

−1A) that correspond to
small eigenvalues.

The SOR and SSOR samplers use a splitting A = Mω − Nω, where we have in-
cluded the subscript to stress the dependence on the relaxation parameter ω. These
are accelerated Gibbs samplers when ̺(M−1

ω Nω) < ̺(M−1
GSNGS). By Corollary 3, the

same value of ω that optimizes the convergence of the stationary linear solver (Table 3),
ω∗ = argmin0<ω<2̺(M

−1
ω Nω), also optimizes the convergence of the stationary sampler

(Figure 2B). Thus, choice of an optimal relaxation parameter achieves acceleration by
reducing the convergence factor.

Chebyshev accelerated SSOR sampler

By application of Theorem 5 to the case of Chebyshev polynomials, we derived a Cheby-
shev accelerated SSOR sampler by iteratively updating parameters via equation (13) and
then evaluating equation (17) (Fox and Parker, 2014). The implementation in Algorithm
1 follows the exposition due to (Axelsson, 1996).
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Algorithm 1: Chebyshev accelerated SSOR sampler from N(µ = A−1
ν,A−1)

input : SSOR parameter ω : 0 < ω < 2; the vector ν so that µ = A−1
ν; SOR splitting

A = Mω −Nω ; extreme eigenvalues 0 < λmin < λmax of M−1
SSORA; initial state y(0);

maximum iteration kmax

output: y(kmax+1) approximately distributed as N(0,A−1)

Set D
1/2
ω = ((2/ω − 1) diag(A))1/2, δ = ((λmax − λmin)/4)

2, τ = 2/(λmax + λmin);

β = 2τ ;
α = 1;
b = 2/α− 1;
a = (2/τ − 1) b;
κ = τ ;
for k = 0, . . . , kmax do

sample z ∼ N(ν, I);

c = b1/2D
1/2
ω z;

x = y(k) +M−1
ω (c−Ay(k));

sample z ∼ N(ν, I);

c = a1/2D
1/2
ω z;

w = x− y(k) +M
−T
ω (c−Ax);

if k = 0 then

y(k+1) = α(y(k) + τw);
else

y(k+1) = α(y(k)
− y(k−1) + τw) + y(k−1);

end

β = (1/τ − βδ)−1;
α = β/τ ;
b = 2κ(1− α)/β + 1;
a = (2/τ − 1) + (b− 1) (1/τ + 1/κ− 1);
κ = β + (1− α)κ;

end


