Fossil thermokarst in South Bohemia (Czech Republic)

 

Jan Hošek, Petr Pokorný, Jindřich Prach, Petr Šída, Marek Křížek

Geoscience Research Reports 51, 2018, pages 131–139

Full text (PDF, 9.84 MB)

Published online: 3 September 2018

Export to RIS

 

Abstract

Thermokarst is a geomorphologic/genetic designation for areas where thawing of permafrost leads to local or widespread collapse, subsidence, erosion, and instability of the ground surface. Although thermokarst processes are recently peculiar to regions underlain by permafrost, i.e. in particular to lowlands of high latitudes Arctic areas (Alaska, Canada, northern and eastern Siberia), geomorphology and sediments reflecting former thermokarst presence can also be found in middle latitudes, far from the recent permafrost areas. The so-called “fossil thermokarst” features, including thermokarst gullies, lakes and other kind of depressions, have been documented from many areas of northern and northwestern Europe as well as from Northern America. In contrast to those areas, the knowledge on the thermokarst processes and landscapes along the southern margin of the Last Glacial permafrost zone (i.e. ˜ 44-47°N) is still relatively fragmental.
The presented paper deals with the Late Pleistocene geomorphological and sedimentological evolution of the Třeboň region in South Bohemia (49.1°N, 14.7°E; 400-430 m asl) located during the Last Glacial Maximum ˜ 110 km north of the Alpine piedmont glaciers and ˜ 420 km from the southern edge of the North European Ice Sheet.
The geological basement of the flat landscape of the Třeboň region consists of Cretaceous sandstones and Miocene sandy/clayey fluvio-lacustrine sediments. Periglacial features like fossil polygons, nets or ice-wedge pseudomorphs documented in the study area prove the presence of permafrost in the region during the Late Pleistocene. We have also observed involution features (ball-and-pillow structures, injection tongues, and festoons) formed in unpaved sandy sediment, which testify permafrost degradation processes, probably during the Late Weichselian.
Moreover, besides these periglacial features, we have discovered a total of 27 depressions filled with lacustrine sediments and peat (Figs 1 and 2). Most of them are covered by artificial fishponds of Medieval and Modern origin and thus hardly recognized in the landscape. These basins vary in size (tens up to hundreds of meters in diameter) in the depth of their infilling (1-12 m). Nevertheless, they share several common features such as their location on Miocene sedimentary bedrock, elongated shape, and the presence of tectonic faults that often run along their major axis. According to radiocarbon and relative palynological dating, the largest basins (Figs 2 and 3) were formed along the Pleniglacial/Late Glacial transition (˜ 16-15 ka), whereas the smaller depressions originated during the Late/ Glacial/Early Holocene. Based on detail geomorphological investigations (approx. 300 hand drilling) and comparison of the geological and hydrogeological setting of the study area with the classicthermokarst landscape of Central Yakutia (Fig. 5), we assume that these basins are the result of the complex of thermokarst processes, including formation and collapse of alases and consequent surface degradation of the permafrost, which occurred here during periglacial conditions of the Late Weichselian (Fig. 6).
 

References

Czudek, T. (1986): Pleistocenní permafrost na území Československa. - Geogr. Čas. 38, 2-3, 245-252.

Czudek, T. - Demek, J. (1970): Thermokarst in Siberia and its influence on the development of lowland relief. - Quat. Res. 1, 103-120.

Dohnal, Z (1958): Borkovická blata. - Antropozoikum 7, 91-108.

Eissmann, L. (1981): Periglaziäre Prozesse und Permafroststrukturen aus sechs Kaltzeiten des Quartärs. - Altenburger Naturwiss. Forsch. 1, 1-171.

French, H. M. (1986): Periglacial involutions and mass displacement structures, Banks Island, Canada. - Geogr. Annaler, 68A(3), 167-174.View article

French, H. M. (2007): The Periglacial Environment. Third Edition. - 472 str. Wiley, Chichester.

Guo, W. - Liu, H. - Anenkhonov, O.A. - Shangguan, H. - Sandanov, D.V. - Korolyuk, A.Yu - Hu, G. - Wu, X. (2018): Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. - Agricult. Forest Meteorol. 252, 10-17.View article

Hoek, W. (1997): Palaeogeography of Lateglacial vegetations. Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape, and climate in The Netherlands. - 191 str. Netherlandse.

Hošek, J. - Pokorný, P. - Kubovčík, V. - Horáček, I. - Žáčková, P. - Kadlec, J. - Rojik, F. - Lisá, L. - Bučkuliaková, S. (2014): Late glacial climatic and environmental changes in eastern-central Europe: Correlation of multiple biotic and abiotic proxies from the Lake Švarcenberk, Czech Republic. - Palaeogeogr. Palaeoclim. Palaeoecol. 396, 155-172.View article

Hošek, J. - Pokorný, P. - Prach, J. - Lisá, L. - Matys Grygar, T. - Knésl, I. - Trubač, J. (2017): Late Glacial erosion and pedogenesis dynamics: Evidence from high-resolution lacustrine archives and paleosols in south Bohemia (Czech Republic). - Catena 150, 261-278. View article

Hošek, J. - Pokorný, P. - Šída, P. - Prach, J. (2013): Nově objevená pozdně glaciální jezera na Třeboňsku. - Zprávy o geologických výzkumech v roce 2012. 125-131.

Hošek, J. - Prach, J. - Šída, P. - Houfková, P. - Vondrák, D. - Lisá, L. - Pokorný, P. - Chvojka, O. - Dohnal, J. (2016): Sedimentární vývoj pozdně glaciálních jezer u Veselí nad Lužnicí. - Zpr. geol. Výzk. - Geoscience Research Reports 49, 157-164.

Chábera, S. (1973): Příspěvek k poznání kryogenních forem reliéfu v jižních Čechách. -Přírodověd. Čas. jihočes. 13, 63-67.

Chábera, S. - Mach, V. (1977): Mrazové hrnce a klíny severně od Plané n. Lužnicí. - Sbor. Jihočes. Muz. v Čes. Budějovicích, přír. Vědy 17, 3-9.

Krásný, J. - Císlerová, M. - Čurda, S. - Datel, J. V. - Dvořák, J. - Grmela, A. - Hrkal, Z. - Kříţ, H. - Marszałek, H. - Šantrůček, J. - Šilar, J. (2012): Podzemní vody České republiky. Regionální hydrogeologie prostých a minerálních vod. - 1144 str. Čes. geol. služba. Praha.

Křížek, M. - Uxa, T. - Krause, D. - Vohradský, L. (in review): Spatial distribution of ice-wedge pseudomorphs in the Czech Republic. - Journal of Maps.

Kunský, J. (1946): Mrazové klíny v jižních Čechách. - Sbor. ČSSZ 50, 25-27.

Makkaveyev, A. N. - Bronguleev, V.V. - Karavaev, V. A. (2015): Pleistocene Pingo in the Central Part of the East European Plain. - Permafrost Periglac. Process. 26, 360-367.

Malecha, A. - Holásek, O. - Maštera, L. (1991): Geologická mapa ČR 1 : 50 000, list 23-33 Veselí nad Lužnicí. - Čes. geol. úst. Praha.

Pissart, A. (1983): Pingos et palses: Un essai de synthese des connaissances actuelles. In: Poser, H. - Schunke, E., ed: Mesoformen des ReIiefs im heutigen Periglazialraum. - Abhandlung. Akad.Wiss. Gottingen. Math.-Phys. Klasse. Vandenhoeck and Ruprecht 3 Folge. 35, 48-69.

Pokorný, P. (2002): A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in Czech Republic. - Quat. Int. 91, 101-122.View article

Pokorný, P. - Šída, P. - Chvojka, O. - Žáčková, P. - Kuneš, P. - Světlík, I. - Veselý, J. (2010): Palaeoenvironmental research of the Schwarzenberg Lake, southern Bohemia, and exploratory excavationsof this key Mesolithic archaeological area. - Památ. archeol. 101, 5-38.

Reimer, P. J. - Bard, E. - Bayliss, A. et al. (2013): IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. - Radiocarbon 55, 1869-1887.

Soloviev, P. A. (1973): Thermokarst phenomena and landforms due to frost heaving in central Yakutia. - Biul. Peryglac 23, 135-155.

Šída, P. - Pokorný, P. (2011): Zjišťování archeologického potenciálu krajiny pomocí kvartérně geologického mapování na příkladu Třeboňska. - Archeol. Rozhl. 63, 485-500.

Šída, P. - Pokorný, P. - Chvojka, O. - Kuneš, P. (2010): Výzkum okolí jezera Švarcenberk v letech 2005-2008. In: Krištuf, P. - Vařeka, P: Opomíjená archeologie 2007-2008, 36-45. - Kat. archeol. Filozof. fak. Západočes. univ. Plzeň.

Ulrich, M. - Wetterich, S. - Rudaya, N. - Frolova, L. - Schmidt, J. - Siegert, C. - Fedorov, A. N. - Zielhofer, C. (2017): Rapid thermokarst evolution during the mid-Holocene in Central Yakutia, Russia. - Holocene 27, 1899-1913.

Vandenberghe, J. (2001): Permafrost during the Pleistocene in north-west and central Europe. In: Paepe, R. - Melnikov, V. - van Overloop, E. - Gorokhov, V. D.: Permafrost Response on Economic Development, Environmental Security and Natural Resources. 185-194. - Kluwer Acad. Publ.

Walker, M.J.C. (1995): Climatic changes in Europe during the last glacial/interglacial transition. - Quat. Int. 28, 63-76.View article

Yershov, E.D. (2004): General Geocryology. - 580 str.Cambridge Univ. Press, Cambridge.

Žák, K. - Richter, D. K. - Filippi, M. - Živor, R. - Deininger, M. - Mangini, A. -Scholz, D. (2012): Coarsely crystalline cryogenic cave carbonate - a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe. - Clim. Past 8, 1821-1837.