Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 27, 2018

Investigation of the Mechanical and Thermal Properties of LFR PA66 with Graphene Coating on Fibre Surface

  • S.-Y. Jin , W.-W. Du , F. Benkhenafou and L. Douadji

Abstract

An industrial fibreglass winding process is employed to apply graphene based sizing (0.2 wt% graphene concentration) on fibreglass surface. Both SEM and Raman spectroscopy characterization have proved that the coating of graphene on fibreglass surface is homogeneous and that the roughness of the fibreglass surface was improved. Long fiberglass-graphene reinforced PA66 pellets are successfully prepared through a pultrusion process. LGF-graphene-PA66 composites are produced following an injection molding process. Thermal conductivity was found to increase from 0.23 W/m · K−1 to 0.67 W/m · K−1 when compared with samples without graphene coating. The tensile strength of LGF-graphene-PA66 is 196 MPa while that of LGF-PA66 is 173 MPa. Tensile modulus is also found to increase to 13.5 GPa from 10.6 GPa after graphene coating. This new graphene coating process is a good method to produce high performance composites.


*Correspondence address, Mail address: Lyes Douadji, Intelligent Industrial Design Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, 400714 Chongqing, PRC, E-mail:

References

Bannister, M., “Challenges for Composites into the Next Millennium – A Reinforcement Perspective”, Composites Part A, 32, 901910 (2001) 10.1016/S1359-835X(01)00008-2Search in Google Scholar

Dai, W., Yu, J., Wang, Y., Song, Y. and Bai, H., “Enhanced Thermal and Mechanical Properties of Polyimide/Graphene Composites”, Macromol. Res., 22, 983989 (2014) 10.1007/s13233-014-2143-5Search in Google Scholar

Debelak, B., Lafdi, K., “Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties”, Carbon., 45, 17271734 (2007) 10.1016/j.carbon.2007.05.010Search in Google Scholar

Ferrari, A. C., “Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects”, Solid State Commun., 143, 4757 (2007) 10.1016/j.ssc.2007.03.052Search in Google Scholar

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., “Raman Spectrum of Graphene and Graphene Layers”, Phys. Rev. Lett., 97, 187401187404 (2006) 10.1103/PhysRevLett.97.187401Search in Google Scholar PubMed

Ganguli, S., Roy, A. K. and Anderson, D. P., “Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites”, Carbon., 46, 806817 (2008) 10.1016/j.carbon.2008.02.008Search in Google Scholar

Geim, A. K., “Graphene: Status and Prospects”, Science, 324, 15301534 (2009) PMid:19541989 10.1126/science.1158877Search in Google Scholar PubMed

Geim, A. K., Novoselov, K. S., “The Rise of Graphene”, Nat. Mater., 6, 183191 (2007) PMid:17330084 10.1038/nmat1849Search in Google Scholar PubMed

Gong, L., Kinloch, I. A., Young, R. J., Riaz, I., Jalil, R. and Novoselov, K. S., “Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite”, Adv. Mater., 22, 26942697 (2010) PMid:20473982 10.1002/adma.200904264Search in Google Scholar PubMed

Gong, L., Young, R. J., Kinloch, I. A., Riaz, I., Jalil, R. and Novoselov, K. S., “Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene”, ACS Nano, 6, 20862095 (2012) PMid:22364317 10.1021/nn203917dSearch in Google Scholar PubMed

Hu, Y., Shen, J., Li, N., Ma, H., Shi, M., Yan, B., Huang, W., Wang, W. and Ye, M., “Comparison of the Thermal Properties between Composites Reinforced by Raw and Amino-Functionalized Carbon Materials”; Compos. Sci. Technol., 70, 21762182 (2010) 10.1016/j.compscitech.2010.08.020Search in Google Scholar

Hung, M. T., Choi, O., Ju, Y. S. and Hahn, H. T., “Heat Conduction in Graphite-Nanoplatelet-Reinforced Polymer Nanocomposites”, Appl. Phys. Lett., 89, 023117023119 (2006) 10.1063/1.2221874Search in Google Scholar

Jin, S. Y., Young, R. J. and Eichhorn, S. J., “Hybrid Carbon Fibre–Carbon Nanotube Composite Interfaces”, Compos. Sci. Technol., 95, 114120 (2014) 10.1016/j.compscitech.2014.02.015Search in Google Scholar

Kim, H., Abdala, A. A. and Macosko, C. W., “Graphene/Polymer Nanocomposites”, Macromolecules, 43, 65156530 (2010) 10.1021/ma100572eSearch in Google Scholar

Lee, C., Wei, X., Kysar, J. W. and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 321, 385388 (2008) PMid:18635798 10.1126/science.1157996Search in Google Scholar PubMed

Lee, S. J., Choi, M.-C., Park, S. S. and Ha, C.-S., “Synthesis and Characterization of Hybrid Films of Polyimide and Silica Hollow Spheres”, Macromol. Res., 19, 599607 (2011) 10.1007/s13233-011-0603-8Search in Google Scholar

Li, D. X., Chen, Q., Yang, Y. S., Chen, Y. and Xiao, C.G., “Effects of Flake Graphite on Property Optimisation in Thermal Conductive Composites Based on Polyamide 66”, Plast. Rubber Compos. Process. Appl., 46, 266276 (2017) 10.1080/14658011.2017.1327506Search in Google Scholar

Liu, T., Li, J. L., Wang, X. Z., Deng, Z. H., Yu, X. J., Lu, A., Yu, F. and He, J., “Preparation and Properties of Thermal Conductive Polyamide 66 Composites”, J. Thermoplast. Compos. Mater., 28, 3245 (2015) 10.1177/0892705712475016Search in Google Scholar

Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., “Raman Spectroscopy in Graphene”, Phys. Rep., 473, 5187 (2009) 10.1016/j.physrep.2009.02.003Search in Google Scholar

Marquardt, D. W., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, Journal of the Society for Industrial and Applied Mathematics, 11, 431441 (1963) 10.1137/0111030Search in Google Scholar

Moore, A. L., Shi, L., “Emerging Challenges and Materials for Thermal Management of Electronics”, Mater. Today, 17, 163174 (2014) 10.1016/j.mattod.2014.04.003Search in Google Scholar

Mukhopadhyay, P., Gupta, R. K., “Trends and Frontiers in Graphene-Based Polymer Nanocomposites”, Plast. Eng., 67, 3242 (2011)10.1002/j.1941-9635.2011.tb00669.xSearch in Google Scholar

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 666669 (2004) 10.1126/science.1102896Search in Google Scholar PubMed

Shen, X., Wang, Z. Y., Wu, Y., Liu, X., He, Y. B. and Kim, J. K., “Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites”, Nano Lett., 16, 35853593 (2016) PMid:27140423 10.1021/acs.nanolett.6b00722Search in Google Scholar PubMed

Tanaka, F., Okabe, T., Okuda, H., Ise, M., Kinloch, I. A., Mori, T. and Young, R. J., “The Effect of Nanostructure upon the Deformation Micromechanics of Carbon Fibres”, Carbon., 52, 372378 (2013) 10.1016/j.carbon.2012.09.047Search in Google Scholar

Wang, Y., Wang, X. and Wu, D., “Mechanical and Tribological Enhancement of Polyoxymethylene-Based Composites with Long Basalt Fiber through Melt Pultrusion”, Compos. Interfaces, 23, 743761 (2016) 10.1080/09276440.2016.1168124Search in Google Scholar

Young, R. J., Gong, L., Kinloch, I. A., Riaz, I., Jalil, R. and Novoselov, K. S., “Strain Mapping in a Graphene Monolayer Nanocomposite”, ACS Nano, 5, 30793084 (2011a) PMid:21395299 10.1021/nn2002079Search in Google Scholar PubMed

Young, R. J., Kinloch, I. A. and Nicolais, L.: Graphene Composites, Wiley Encyclopedia of Composites, John Wiley & Sons, Oxford (2011b) 10.1002/9781118097298.weoc102Search in Google Scholar

Zhao, H., Min, K. and Aluru, N. R., “Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension”, Nano Lett., 9, 30123015 (2009) PMid:19719113 10.1021/nl901448zSearch in Google Scholar PubMed

Received: 2017-10-16
Accepted: 2017-11-19
Published Online: 2018-04-27
Published in Print: 2018-05-27

© 2018, Carl Hanser Verlag, Munich

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.3139/217.3604/html
Scroll to top button