Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 17, 2018

Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends

  • L. Q. Xu and Y. Q. Zhao

Abstract

Commercial poly(l-lactic acid) (PLLA) was blended with different contents of graphene oxide-graft-poly(d-lactic acid) (GO-g-PDLA), which was synthesized via ring-opening polymerization using modified GO as initiator. PLLA and PLLA/GO-g-PDLA blend foams were prepared in a batch process via varying-temperature mode using supercritical carbon dioxide as physical foaming agent. The results showed that the addition of GO-g-PDLA in PLLA leads to the formation of stereocomplex (sc)-crystallites. Increase in the GO-g-PDLA content enhances the IR absorption, diffraction peak and melting peak corresponding to the sc-crystallites. The addition of GO-g-PDLA to PLLA leads to the decrease of the cell diameter, increase of the cell density and to a little change in expansion ratio, which is attributed to the fact that the enhancement of PLLA crystallization restricts cell growth and GO-g-PDLA acts as nucleation point.


*Correspondence address, Mail address: Yong-Qing Zhao, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, Guangdong, PRC, E-mail:

References

Auras, R., Harte, B. and Selke, S., “An Overview of Polylactides as Packaging Materials”, Macrol. Biosci., 4, 835864 (2004) 15468294 10.1002/mabi.200400043Search in Google Scholar PubMed

Designation: D 792-00, “Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics Bb Displacement”, ASTM Committee D20, ASTM, West Conshohocken, PA, USA (2001)Search in Google Scholar

Fukushima, K., Kimura, Y., “Stereocomplexed Polylactides (Neo-PLA) as High-Performance Bio-Based Polymers: Their Formation, Properties, and Applications”, Polym. Int., 55, 626642 (2006) 10.1002/pi.2010Search in Google Scholar

Gupta, B., Revagade, N. and Hilborn, J., “Poly(lactic acid) Fiber: An Overview”, Prog. Polym. Sci., 32, 455482 (2007) 10.1016/j.progpolymsci.2007.01.005Search in Google Scholar

Hua, L., Kai, W. H., Yang, J. J. and Inoue, Y., “A New Poly(l-lactide)-Grafted Graphite Oxide Composite: Facile Synthesis, Electrical Properties and Crystallization Behaviors”, Polym. Degrad. Stab., 95, 26192627 (2010) 10.1016/j.polymdegradstab.2010.07.023Search in Google Scholar

Ikada, Y., Jamshidi, K., Tsuji, H. and Hyon, S. H., “Stereocomplex Formation between Enantiomeric Poly(lactides)”, Macromolecules, 20, 904906 (1987) 10.1021/ma00170a034Search in Google Scholar

Jia, P., Hu, J., Zhai, W. T., Duan, Y. X., Zhang, J. M. and Han, C. Y., “Cell Morphology and Improved Heat Resistance of Microcellular Poly(l-lactide) Foam via Introducing Stereocomplex Crystallites of PLA”, Ind. Eng. Chem. Res., 54, 24762488 (2015) 10.1021/ie504345ySearch in Google Scholar

Kakuta, M., Hirata, M. and Kimura, Y., “Stereoblock Polylactides as High-Performance Biobased Polymers”, Polym. Rev., 49, 107140 (2009) 10.1080/15583720902834825Search in Google Scholar

Krouse, S. A., Schrock, R. R. and CohenR. E., “Stereocomplex Formation between Enantiomeric Poly(lactides)”, Macromolecules, 20, 904906 (1987) 10.1021/ma00170a034Search in Google Scholar

Kumar, V., VanderWel, M., Weller, J. and Seeler, K. A., “Experimental Characterization of the Tensile Behavior of Microcellular Polycarbonate Foams”, J. Eng. Mater. Technol., 116, 439445 (1994) 10.1115/1.2904310Search in Google Scholar

Lerf, A., He, H., Forster, M. and Klinowski, J., “Structure of Graphite Oxide Revisited”, J. Phys. Chem. B, 102, 44774482 (1998) 10.1021/jp9731821Search in Google Scholar

Li, D. C., Liu, T., Zhao, L., Lian, X. S. and YuanW. K., “Foaming of Poly(lactic acid) Based on Its Nonisothermal Crystallization Behavior under Compressed Carbon Dioxide”, Ind. Eng. Chem. Res., 50, 19972007 (2011) 10.1021/ie101723gSearch in Google Scholar

Li, Y., Han, C., “Isothermal and Nonisothermal Cold Crystallization Behaviors of Asymmetric Poly(L-lactide)/Poly(D-lactide) Blends”, Ind. Eng. Chem. Res., 51, 1592715935 (2012) 10.1021/ie302447eSearch in Google Scholar

Li, Z. B., Tan, B. H., Lin, T. T. and He, C. B., “Recent Advances in Stereocomplexation of Enantiomeric PLA-Based Copolymers and Applications”, Prog. Polym. Sci., 62, 2272 (2016) 10.1016/j.progpolymsci.2016.05.003Search in Google Scholar

Liao, X., Nawaby, A. V. and Whitfield, P. S., “Carbon Dioxide-Induced Crystallization in Poly(L-lactic acid) and Its Effect on Foam Morphologies”, Polym. Int., 59, 17091718 (2010) 10.1002/pi.2910Search in Google Scholar

Liao, X., Nawaby, A. V., “The Sorption Behaviors in PLLA-CO2 System and Its Effect on Foam Morphology”, J. Polym. Res., 19, 98279836 (2012) 10.1007/s10965-012-9827-3Search in Google Scholar

Lin, T. T., Liu, X. Y. and He, C., “A DFT Study on Poly(lactic acid) Polymorphs”, Polymer, 5, 27792785 (2010) 10.1016/j.polymer.2010.03.062Search in Google Scholar

Matuana, L. M., “Solid State Microcellular Foamed Poly(lactic acid): Morphology and Property Characterization”, Bioresour. Technol., 99, 36433650 (2008) 17855079 10.1016/j.biortech.2007.07.062Search in Google Scholar PubMed

Mihai, M., Huneault, M. A. and Favis, B. D., “Crystallinity Development in Cellular Poly(lactic acid) in the Presence of Supercritical Carbon Dioxide”, J. Appl. Polym. Sci., 113, 29202932 (2009) 10.1002/app.30338Search in Google Scholar

Mizumoto, T., Sugimura, N., Moritani, M., Sato, Y., Masuoka, H., “CO2-Induced Stereocomplex Formation of Stereoregular Poly (methyl methacrylate) and Microcellular Foams”, Macromolecules, 33, 67576763 (2000) 10.1021/ma000443nSearch in Google Scholar

Nofar, M., Ameli, A. and Park, C. B., “Development of Polylactide Bead Foams with Double Crystal Melting Peaks”, Polymer, 69, 8394 (2015) 10.1016/j.polymer.2015.05.048Search in Google Scholar

Nofar, M., Ameli, A. and Park, C. B., “A Novel Technology to Manufacture Biodegradable Polylactide Bead Foam Products”, Mater. Des., 83, 413421 (2015) 10.1016/j.matdes.2015.06.052Search in Google Scholar

Rathi, S. R., Coughlin, E. B., Hsu, S. L., Golub, C. S., LingG. H. and Tzivanis, M. J., “Effect of Midblock on the Morphology and Properties of Blends of ABA Triblock Copolymers of PDLA-Mid-Block-PDLA with PLLA”, Polymer, 53, 30083016 (2012) 10.1016/j.polymer.2012.05.005Search in Google Scholar

Saravanan, M., Domb, A. J., “A Contemporary Review on – Polymer Stereocomplexes and Its Biomedical Application”, Eur. J. Nanomed., 5, 8186 (2013) 10.1515/ejnm-2012-0017Search in Google Scholar

Slomkowski, S., Penczek, S. and Duda, A., “Polylactides-An Overview”, Polym. Adv. Technol., 25, 436447 (2014) 10.1002/pat.3281Search in Google Scholar

Sun, Y., He, C., “Synthesis and Stereocomplex Crystallization of Poly(lactide)–Graphene Oxide Nanocomposites”, ACS Macro. Lett., 1, 709713 (2012) 10.1021/mz300131uSearch in Google Scholar

Sun, Y., He, C.Biodegradable “Core–Shell” Rubber Nanoparticles and Their Toughening of Poly(lactides)”, Macromolecules, 46, 96259633 (2013) 10.1021/ma4020615Search in Google Scholar

Sun, Y., HeC.Synthesis, Stereocomplex Crystallization, Morphology and Mechanical Property of Poly(lactide)-Carbon Nanotube Nanocomposites”, RSC Adv., 3, 22192226 (2013) 10.1039/c2ra23179dSearch in Google Scholar

Sasaki, S., Asakura, T., “Helix Distortion and Crystal Structure of the Α-Form of Poly(L-lactide)”, Macromolecules, 36, 83858390 (2003) 10.1021/ma0348674Search in Google Scholar

TsujiH., IkadaY., “Stereocomplex Formation between Enantiomeric Poly(lactic acids). 9. Stereocomplexation from the Melt”, Macromolecules, 26, 69186926 (1993) 10.1021/ma00077a032Search in Google Scholar

Tsuji, H., Ikada, Y., “Crystallization from the Melt of Poly(lactide)s with Different Optical Purities and Their Blends”, Macromol. Chem. Phys., 197, 34833499 (1996) 10.1002/macp.1996.021971033Search in Google Scholar

Tsuji, H., Ikada, Y., “Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 6. Mechanical Properties and Morphology of Solution-Cast Films”, Polymer, 40, 66996708 (1999) 10.1016/S0032-3861(99)00004-XSearch in Google Scholar

Tsuji, H., Fukui, I., “Enhanced Thermal Stability of Poly(lactide)s in the Melt by Enantiomeric Polymer Blending”, Polymer, 44, 28912896 (2003) 10.1016/S0032-3861(03)00175-7Search in Google Scholar

TsujiH., TezukaY., “Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt”, Biomacromolecules, 5, 11811186 (2004) 15244428 10.1021/bm049835iSearch in Google Scholar PubMed

Tsuji, H., “Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications”, Macromol. Biosci., 5, 569597 (2005) 15997437 10.1002/mabi.200500062Search in Google Scholar PubMed

Tsuji, H., “Poly(lactic acid) Stereocomplexes: A Decade of Progress”, Adv. Drug. Deliv. Rev., 107, 97135 (2016) 10.1016/j.addr.2016.04.017Search in Google Scholar PubMed

Tan, B. H., Hussain, H., Lin, T. T., Chua, Y. C., Leong, Y. W., Tjiu, W. W., Wong, P. K. and He, C. B., “Stable Dispersions of Hybrid Nanoparticles Induced by Stereocomplexation between Enantiomeric Poly(lactide) Star Polymers”, Langmuir, 27, 1053810547 (2011) 21761846 10.1021/la202110wSearch in Google Scholar PubMed

Wang, X. X., Kumar, V. and Li, W., “Development of Crystallization in PLA during Solid-State Foaming Process Using Sub-Critical CO2”, Cell. Polym., 31, 118 (2012)10.1177/026248931203100101Search in Google Scholar

Woo, E. M., Chang, L.Crystallization and Morphology of Stereocomplexes in Nonequimolar Nixtures of Poly(L-lactic acid) with Excess Poly(D-lactic acid)”, Polymer, 52, 60806089 (2011) 10.1016/j.polymer.2011.11.002Search in Google Scholar

Xu, C., Wu, X. D., Zhu, J. W. and WangX., “Synthesis of Amphiphilic Graphite Oxide”, Carbon, 46, 386389 (2008) 10.1016/j.carbon.2007.11.045Search in Google Scholar

Xu, L. Q., Huang, H. X., “Foaming of Poly(lactic acid) Using Supercritical Carbon Dioxide as Foaming Agent: Influence of Crystallinity and Spherulite Size on Cell Structure and Expansion Ratio”, Ind. Eng. Chem. Res., 53, 22772286 (2014) 10.1021/ie403594tSearch in Google Scholar

Yamane, H., Sasai, K., Takano, M., Takahashi, M., “Poly(D-lactic acid) as a Rheological Modifiler of Poly(L-lactic acid): Shear and Biaxial Extensional Flow Behavior”, J. Rheol., 48, 599609 (2004) 10.1122/1.1687736Search in Google Scholar

Zhai, W. T., Ko, Y., Zhu, W. L., Wong, A. and Park, C. B., “A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2”, Int. J. Mol. Sci., 10, 53815397 (2009) 20054476 10.3390/ijms10125381Search in Google Scholar PubMed PubMed Central

Zhang, J. M., Tashiro, K., Tsuji, H. and Domb, A. J., “Investigation of Phase Transitional Behavior of Poly(L-lactide)/Poly(D-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex”, Macromolecules, 40, 10491054 (2007) 10.1021/ma061693sSearch in Google Scholar

Zhang, J. M., Sato, H., Tsuji, H., Noda, I. and Ozaki, Y., “Differences in the CH3···OC Interactions among Poly(L-lactide), Poly(L-lactide)/Poly(D-lactide) Stereocomplex, and Poly(3-hydroxybutyrate) Studied by Infrared Spectroscopy”, J. Mol. Struct., 735–736, 249257 (2005)10.1016/j.molstruc.2004.11.033Search in Google Scholar

Received: 2017-05-01
Accepted: 2017-06-21
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/217.3492/html
Scroll to top button