Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 26, 2013

Modeling and Practice of Ethanol-devolatilization of Silica-silane Rubber Compoundsin an Internal Mixer

  • W. Dierkes and J. W. M. Noordermeer

Abstract

During mixing of a rubber compound containing silica and silane, the mixer is not only used for the dispersion of the filler and other ingredients, but also for a chemical reaction. These two functionalities of the mixer result in opposite processing requirements: A good dispersion is reached by high shearing forces, increasing the compound temperature. The silanization is not dependent on high shearing forces; it is positively influenced by high temperatures, but with an increasing risk of scorch. Another drawback is the equilibrium between the ethanol concentration in the vapor phase in the void space of the mixing chamber and in the rubber phase, which is limiting the reaction rate of the silanization. Devolatilization of the compound is a crucial factor for the efficiency of the silanization reaction.

In this article a model for devolatilization of a rubber compound in an internal mixer is developed, including a chemical reaction replenishing the volatile component during the devolatilization process. The model is based on the penetration theory, with the main contribution to the devolatilization being convective mass transfer. The main influencing factors, theoretically deducted and practically verified, are temperature, mixer volume, fill factor, rotor speed, reaction time and partial pressure of the volatile component in the void volume of the mixer.


Mail address: W. Dierkes, University of Twente, Faculty of Engineering Technology, Department of Elastomer Technology and Engineering, P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail:

References

1Latinen, G. A.: Am. Chem. Soc. Adv. Chem. Ser. 34, p. 235 (1961)10.1021/advancesSearch in Google Scholar

2Coughlin, R. W., Canevari, G. P.: AIChE J. 15, p. 560 (1969)10.1002/aic.690150416Search in Google Scholar

3Roberts, G. W.: AIChe J. 16, p. 878 (1970)10.1002/aic.690160530Search in Google Scholar

4Biesenberger, J. A., Sebastian, D. H.: Principles of Polymerization Engineering. Wiley-Interscience, New York (1983)Search in Google Scholar

5Denson, C. D., in: Advances in Chemical Engineering, Wei, J. (Ed.), Harcourt Brace Jovanovich, New York, p. 61 (1983)10.1016/S0065-2377(08)60251-3Search in Google Scholar

6Collins, G. P., Denson, C. D., Astarita, G.: AIChE J. 31, p. 1288 (1985)10.1002/aic.690310807Search in Google Scholar

7Valsamis, L. N., Canedo, E. L.: SPE ANTEC Tech. Paper, New York (1989)Search in Google Scholar

8Valsamis, L. N., Canedo, E. L.: Int. Polym. Process. 4, p. 247 (1989)10.3139/217.890247Search in Google Scholar

9Foster, R. W., Lindt, J. T.: Polym. Eng. Sci. 30, p. 621 (1990)10.1002/pen.760301102Search in Google Scholar

10Foster, R. W., Lindt, J. T.: Polym. Eng. Sci. 30, p. 424 (1990)10.1002/pen.760300707Search in Google Scholar

11Keum, J., White, J. L.: Int. Polym. Process. 14, p. 101 (2004)Search in Google Scholar

12Wang, N. H., Sakai, T., Hashimoto, N.: Int. Polym. Process. 10, p. 296 (1995)10.3139/217.950296Search in Google Scholar

13Wang, N. H.: Polym. Eng. Sci., 40 (8), p. 1833 (2000)10.1002/pen.11315Search in Google Scholar

14Wang, N. H.: Chem. Eng. Technol. 24, p. 957 (2001)10.1002/1521-4125(200109)24:9<957::AID-CEAT957>3.0.CO;2-MSearch in Google Scholar

15Cairncross, R. A., Francis, L. F., Scriven, L. E.: AIChE J. 42, p. 55 (1996)10.1002/aic.690420107Search in Google Scholar

16Alsoy, S., Duda, J. L.: Drying Technol. 16, p. 15 (1998)10.1080/07373939808917390Search in Google Scholar

17Alsoy, S., Duda, J. L.: J. Polym. Sci., Part B: Polym. Phys. 37, p. 1665 (1999)10.1002/(SICI)1099-0488(19990715)37:14<1665::AID-POLB11>3.0.CO;2-PSearch in Google Scholar

18Vrentas, J. S., Vrentas, C. M.: J. Poly. Sci., Part B: Polym. Phys. 32, p. 187 (1994)10.1002/polb.1994.090320122Search in Google Scholar

19Okazaki, M., Shioda, K., Masuda, K., Toei, R.: J. Chem. Eng. Japan. 7, p. 99 (1974)10.1252/jcej.7.99Search in Google Scholar

20Siddaramaiah, R. S., Premakumar, U., Varadarajulu, A.: JAPS67, p. 101 (1998)10.1002/(SICI)1097-4628(19980103)67:1<101::AID-APP12>3.0.CO;2-4Search in Google Scholar

21Hunsche, A., Goerl, U., Koban, H. G., Lehmann, Th.: Kautsch. Gummi Kunstst. 51, p. 525 (1998)Search in Google Scholar

22Dierkes, W., Noordermeer, J. W. M.: Paper presented at the European Rubber Research – Practical Improvements of the Mixing Process Conference, Paderborn, Germany (2005)Search in Google Scholar

23Luginsland, H.-D.: Paper presented at the 11. SRC Conference, Puchov, Poland (1999)Search in Google Scholar

24Luginsland, D., Hasse, A.: Paper presented at the Am. Chem. Soc. Rubber Div. Conference, Dallas, TX, USA (2000)Search in Google Scholar

25Görl, U., Hunsche, A., Mueller, A., Koban, H. G.: Rubber Chem. Technol. 70, p. 608 (1997)10.5254/1.3538447Search in Google Scholar

26Görl, U., Parkhouse, A.: Kautsch. Gummi Kunstst. 52, p. 493 (1999)Search in Google Scholar

Received: 2006-1-26
Accepted: 2007-2-28
Published Online: 2013-03-26
Published in Print: 2007-07-01

© 2007, Carl Hanser Verlag, Munich

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.0010/html
Scroll to top button