Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2014

Durability of Multiple-Anticorrosive Bolts in a Corrosive Environment

Lebensdauer mehrfach korrosionsgeschützter Ankerbolzen in korrosiver Umgebung
  • Bo Wang , Zheng Li , Chuan He , Pei Zhu and Fuhai Li
From the journal Practical Metallography

Abstract

This paper first introduces the structure of multiple-anticorrosive bolts and the anticorrosive mechanism. To thoroughly analyze the durability of multiple-anticorrosive bolts in a corrosive environment, different corrosive environments were simulated and experiments on the durability of double- and multiple-anticorrosive bolts were conducted. Apparent changes were observed and the bond strength after corrosion was measured. From these test data, the resistance to corrosion was compared for the two types of bolts, and formulae for the service life of double- and multiple-anticorrosive bolts were derived in different corrosive environments. At the same time, a number of modification coefficients for optimization of the service-life formulae were put forward. The anticorrosion performance of the multiple-anticorrosive bolt was mainly studied and compared with that of the double-anticorrosion bolt, and the multiple-anticorrosive bolt was verified to have superior durability in a corrosive environment. The conclusions drawn in this study can be applied in the design of anticorrosive bolts to be used in an underground structure and later applied in durability analysis, providing reference values for actual engineering.

Kurzfassung

Diese Arbeit präsentiert zunächst den Aufbau mehrfach korrosionsgeschützter Ankerbolzen und deren korrosionshemmenden Mechanismus. Um eingehend die Beständigkeit mehrfach korrosionsgeschützter Bolzen in einer korrosiven Umgebung zu untersuchen, wurden verschiedene korrosive Umgebungen simuliert und Experimente zur Beständigkeit von doppelt und mehrfach korrosionsgeschützten Bolzen durchgeführt. Die sichtbaren Veränderungen wurden betrachtet. Ferner wurde nach der Korrosionseinwirkung die Verbundfestigkeit gemessen. Auf Grundlage dieser Testdaten wurde die Korrosionsbeständigkeit der zwei Bolzentypen verglichen und Formeln für die Lebensdauer von doppelt und mehrfach korrosionsgeschützten Bolzen in unterschiedlichen korrosiven Umgebungen abgeleitet. Gleichzeitig wurden mehrere Änderungskoeffizienten zur Optimierung der Formeln zur Lebensdauer vorgeschlagen. Hauptsächlich wurde die Korrosionsschutzleistung des mehrfach korrosionsgeschützten Bolzens untersucht, mit der des doppelt korrosionsgeschützten Bolzens verglichen und die überlegene Beständigkeit des mehrfach korrosionsgeschützten Bolzens in korrosiver Umgebung überprüft. Die Ergebnisse aus dieser Untersuchung können bei der Konzeption für Tiefbaukonstruktionen vorgesehene korrosionsgeschützte Bolzen verwendet und später in der Lebensdaueranalyse eingesetzt werden, falls Referenzwerte für reale Konstruktionen vorliegen.


Übersetzung: E. Engert


References / Literatur

[1] WeipingLiu. The study of nonlocal friction effect and pullout capacity of anchor bolt (Cable). Nanchang University.Search in Google Scholar

[2] LewenZhang, RenWang. Research on status quo of anchorage theory of rock and soil. Rock and Soil Mechanics, 2002, 23(5): 627631.Search in Google Scholar

[3] JianZhao, WenzhengJi, LingXiao, et al. In-situ experimental study on anchor durability. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (7)):13771385.Search in Google Scholar

[4] ChenQingyu, Test research anchor durability Under the action of sulfate mortar. Chongqing University.Search in Google Scholar

[5] LiangkuiChen. Present status and development of ground anchorages. China Civil Engineering Journal, 2001, 34(3): 712.Search in Google Scholar

[6] JiawenCao. Test study and numerical simulation analysis of inflatable anchors mechanism. Central South University.Search in Google Scholar

[7] B.Indraratna. Design for grouted rock bolts based on the convergence control method. Int. J. Rock Mecha. Min. Sci. Vol. 27, No. 4. pp. 269281, 1990. DOI: 10.1016/0148-9062(90)90529-BSearch in Google Scholar

[8] SureshDivi. Corrosion susceptibility of potential rock bolts in aerated multi-ionic simulated concentrated water. Tunnelling and Underground Space Technology: 26 (2011) 124129. DOI: 10.1016/j.tust.2010.07.003Search in Google Scholar

[9] DinghaiHong. Corrosion and Protection of Steel Rebar in Concrete. Beijing: China Railway Publishing House, 1998. p. 334.Search in Google Scholar

[10] ErnestoVillalba, Andrej Atrens, Metallurgical aspects of rock bolt stress corrosion cracking. Materials Science and Engineering A491 (2008) 818. DOI: 10.1016/j.msea.2007.11.086Search in Google Scholar

[11] V.V.R.Prasad, R.D.Dwivedi and AnilSwarup, Determination of support pressure for tunnels and caverns using block theory. Tunnelling and Underground Space Technology37 (2013) 5561 DOI: 10.1016/j.tust.2013.03.006Search in Google Scholar

[12] Bolt shotcrete supporting technology specification (GB50086-2001)Search in Google Scholar

[13] E.Gamboa, A.Atrens, Proceeding, 15th International Corrosion Congress, Granada (2002) 19 (paper 811).Search in Google Scholar

[14] E.Gamboa, A.Atrens, in: N.R.Moody, A.W.Thompson, R.E.Ricker, G.S.Was, R.H.Jones (Eds.), Hydrogen Effects on materials Behaviour and Corrosion Deformation Interactions, TMS (2003) 641647.Search in Google Scholar

[15] E.Gamboa, A.Atrens, Laboratory testing of rock bolt Stress Corrosion Cracking, COAL 2003, 4th Underground Coal Operators Conference, University of Wollongong, 12–14 February (2003e) N.Aziz and B.Kinnimoth (eds.), publisher Aus IMM132153.Search in Google Scholar

[16] HEChuan, WANGBo. Research progress and development trends of highway tunnels in China. Journal of Modern Transportation, 2013, 21(4): 209223. DOI: 10.1007/s40534-013-0029-4Search in Google Scholar

[17] Crosky, A.; Fabjanczyk, M. et al.: Final report – premature rock bolt failure, ACARP c 8008. Tech. Rep, Australian Coal Association Research Program (2002). Bobet. Elastic solution for deep tunnels application to excavation damagezone and rockbolt support. Rock Mech. Rock Eng. 42, 147–174.Search in Google Scholar

[18] HaiqingYang, DaHuang and XiumingYang, Analysis model for the excavation damage zone in surrounding rock mass of circular tunnel, Tunnelling and Underground Space Technology35 (2013) 7888. DOI: 10.1016/j.tust.2012.12.006Search in Google Scholar

[19] Bobet. Elastic solution for deep tunnels application to excavation damagezone and rockbolt support. Rock Mech. Rock Eng.42, 147174.10.1007/s00603-007-0140-0Search in Google Scholar

[20] Lee, J.S., Min, B.K., Yu, J.D., Lee, I.M., Han, S.I., and Lee, Y.J.Applicability of nond estructive evaluation technique for rock bolt integrity using time-frequency analysis.” World Tunnel Congress, International Tunnelling and Underground Space Association, Lausanne, Switzerland (2008) 726734.Search in Google Scholar

[21] WeiJun, GuiZhihua, WangYiling. The prediction model of reinforcement corrosion rate in concrete. Journal of wuhan university of technology. 2005, 25 (6)): 4547.Search in Google Scholar

[22] Gamboa, E., Atrens, A., 2005. Material Influence on the stress corrosion cracking of rock bolts. Eng. Fail. Anal.12, 201225. DOI: 10.1016/j.engfailanal.2004.07.002Search in Google Scholar

[23] Maslehuddin, M.; Allam, I.M.; Al-Sulaimani, G.J. et al.: Effect of Rusting of Reinforcing Steel on Its Mechanical Properties and Bond with Concrete. ACI Materials Journal.1990, V. 87(5): 496502.10.14359/1902Search in Google Scholar

[24] Amleh, L.; Mirza, S.: Corrosion Influence on Bond between Steel and Concrete. ACI Structural Journal. 1999, V. 96(3):415423.10.14359/676Search in Google Scholar

Received: 2014-02-10
Accepted: 2014-02-17
Published Online: 2014-05-31
Published in Print: 2014-06-16

© 2014, Carl Hanser Verlag, München

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.3139/147.110292/html
Scroll to top button