Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 3, 2019

Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF

Paper presented at the “VII International Congress of Biomaterials, BIOMAT'2018”, 14–16 March 2018, Havana, Cuba

  • Eren Yılmaz , Azim Gökçe , Fehim Fındık and Hamit Özkan Gülsoy

Abstract

In this study, the effect of Zr content on the corrosion resistance of Ti-16Nb alloy produced by powder injection molding was investigated. Electrochemical corrosion tests were carried out in simulated body fluid using electrochemical impedance spectroscopy and polarization curve analysis. It is observed that, with the addition of 10 wt.% Zr to the base alloy, the corrosion current density and the corrosion rate decreased from 2.23 to 1.55 μA cm−2 and 961.7 × 10−3 mpy to 703 × 10−3 mpy, respectively. As a result, the addition of Zr has been effective in increasing the corrosion resistance of the Ti16Nb alloy.


Correspondence address, Prof. Dr. Hamit Özkan Gülsoy, Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dept., Istanbul, Turkey, Tel.: +90 216 3365770, Fax: +90 216 3378987, E-mail: , Web: http://abys.marmara.edu.tr/hamitozkan.gulsoy/

References

[1] L.Zou, L.Zhou, C.Yang, S.Qu, Y.Li: J. Mater. Res.29 (2014) 902. 10.1557/jmr.2014.58Search in Google Scholar

[2] Y.H.Li, C.Yang, F.Wang, H.D.Zhao, S.G.Qu, X.Q.Li, W.W.Zhang, Y.Y.Li: Mater. Des.85 (2015) 7. 10.1016/j.matdes.2015.06.176Search in Google Scholar

[3] M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogia: Prog. Mater. Sci.54 (2009) 397. 10.1016/j.pmatsci.2008.06.004Search in Google Scholar

[4] Y.He, Y.Zhang, Z.Meng, Y.Jiang, R.Zhou: J. Alloys Compd.720 (2017) 567. 10.1016/j.jallcom.2017.05.287Search in Google Scholar

[5] R.I.M.Asri, W.S.W.Harun, M.Samykano, N.A.C.Lah, S.A.C.Ghani, F.Tarlochan, M.R.Raza: Mater. Sci. Eng. C77 (2017) 1261. PMid:28532004; 10.1016/j.msec.2017.04.102Search in Google Scholar PubMed

[6] M.J.Hwang, H.R.Choi, M.S.Kook, H.J.Song, Y.J.Park: Mater. Corros. (2014) 783. 10.1002/maco.201407784Search in Google Scholar

[7] B.L.Wang, Y.F.Zheng, L.C.Zhao: Mater. Corros.60 (2009) 788. 10.1002/maco.200805173Search in Google Scholar

[8] D.Q.Martins, W.R.Osório, M.E.P.Souza, R.Caram, A.Garcia: Electrochim. Acta53 (2008) 2809. 10.1016/j.electacta.2007.10.060Search in Google Scholar

[9] E.Yılmaz, A.Gökçe, F.Findik, H.Ö.Gulsoy: J. Therm. Anal. Calorim. (2017) 1. 10.1007/s10973-017-6808-0Search in Google Scholar

[10] T.Kokubo, H.Takadama: Biomaterials27 (2006) 2907. PMid:16448693; 10.1016/j.biomaterials.2006.01.017Search in Google Scholar PubMed

[11] E.Yılmaz, A.Gökçe, F.Findik, H.Ö.Gülsoy: Vacuum142 (2017) 164. 10.1016/j.vacuum.2017.05.018Search in Google Scholar

[12] J.Málek, F.Hnilica, J.Veselý, B.Smola, K.Kolařík, J.Fojt, M.Vlach, V.Kodetová: Mater. Sci. Eng. A675 (2016) 1. 10.1016/j.msea.2016.07.069Search in Google Scholar

[13] K.E.Tanner: Proc. Inst. Mech. Eng. Part H J. Eng. Med.216 (2002) 215. 10.1243/0954411021536432Search in Google Scholar

[14] D.C.Zhang, Y.F.Mao, Y.L.Li, J.J.Li, M.Yuan, J.G.Lin: Mater. Sci. Eng. A559 (2013) 706. 10.1016/j.msea.2012.09.012Search in Google Scholar

[15] P.Wang: MSc Thesis, Corrosion behaviour of zirconium alloys in high temperature aqueous environment by electrochemical impedance spectroscopy, University of Manchester, UK (2011).Search in Google Scholar

Received: 2018-03-21
Accepted: 2018-07-13
Published Online: 2019-04-03
Published in Print: 2018-04-12

© 2019, Carl Hanser Verlag, München

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.111722/html
Scroll to top button